

Accelerated forward modelling of dark matter dynamics: ML-safety and perfect parallelism

MIAPbP workshop "Big Data, Big Questions: The Future of Cosmological Surveys"

Florent Leclercq

www.florent-leclercq.eu

Mayeul Aubin (IAP), Deaglan Bartlett (IAP), Marco Chiarenza (IAP, U. Milan), Ludvig Doeser (Stockholm University), Tristan Hoellinger (IAP), Guilhem Lavaux (IAP)

and the Aquila Consortium

www.aquila-consortium.org

14 May 2025

Let's define some concepts

- Machine-Learning safety: applying machine learning (ML) in particular neural networks (NNs)
 - in a way that ensures the results are either correct by construction or, at worst, suboptimal.
 - Safe uses of ML eliminates the requirement for explainability.
 - Example: data compression, e.g. denoising autoencoders (DAE) to build summaries, information-maximising neural networks (IMNN) for implicit likelihood inference.

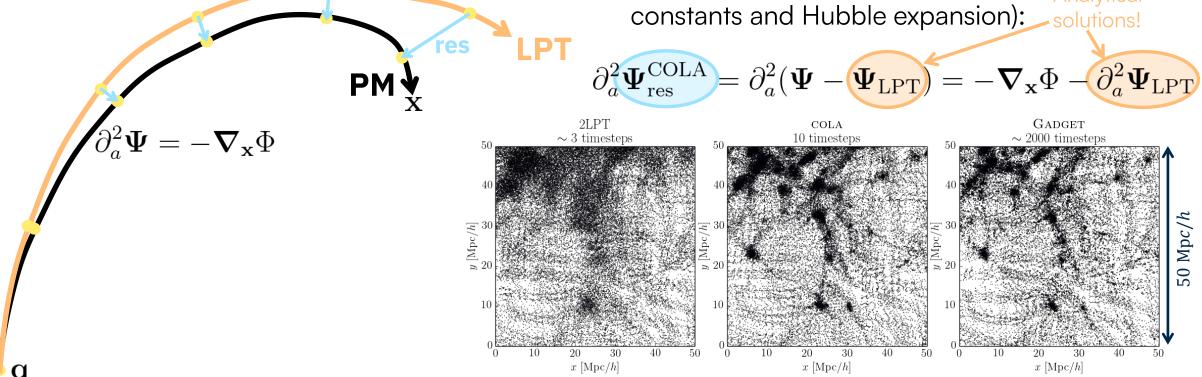
Charnock et al., 1802.03537, Makinen et al., 2107.07405, Makinen et al., 2410.07548

Counter-example: emulation of N-body simulations. There remains an emulation error [up to $\mathcal{O}(10\%)$] that we cannot ever correct for.

He et al., 1811.06533, Lucie-Smith et al., 1802.04271, Jamieson et al., 2206.04594, Conceição et al., 2304.06099, Doeser et al., 2312.09271, Jamieson et al., 2408.07699

- Perfect parallelism: dividing a computational task into independent sub-tasks with no communication between them, allowing for highly efficient parallel processing.
 - It is a.k.a. an "embarrassingly parallel workload" but there's nothing to be embarrassed about, really.
 - Examples: computer simulations comparing many independent scenarios, ensemble calculation of i.i.d. numerical model predictions (e.g. for covariance matrix estimation).
 - Counter-examples: usual N-body simulation codes, recursive algorithms, Markov Chain Monte Carlo.

Florent Leclerca

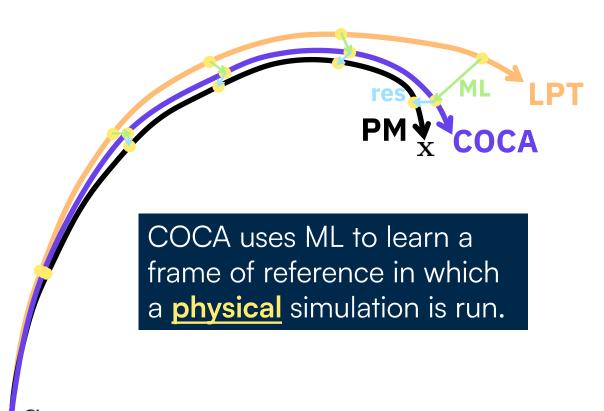

The tCOLA framework: (temporal) COmoving Lagrangian Acceleration

- Idea behind tCOLA: we can make use of the analytical solution at large scales and early times: Lagrangian perturbation theory (LPT).
- Write the displacement vector as:

$$oldsymbol{\Psi} = oldsymbol{\Psi}_{ ext{LPT}} + oldsymbol{\Psi}_{ ext{res}}^{ ext{COLA}} \qquad (\mathbf{x} = \mathbf{q} + oldsymbol{\Psi})$$

Tassev & Zaldarriaga, 1203.5785

Equation of motion (omitted **Analytical**



Tassev, Zaldarriaga & Einsenstein, 1301.0322

The tCOCA framework: (temporal) COmoving Computer Acceleration

 Idea behind tCOCA: the easiest simulation to run is the one where nothing moves!

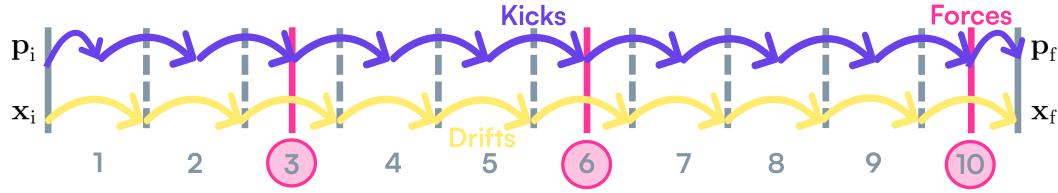
Write the displacement vector as:

$$oldsymbol{\Psi} = oldsymbol{\Psi}_{ ext{LPT}} + oldsymbol{\Psi}_{ ext{ML}} + oldsymbol{\Psi}_{ ext{res}}^{ ext{COCA}} \quad (\mathbf{x} = \mathbf{q} + oldsymbol{\Psi})$$

Equation of motion (omitted constants and Hubble expansion):

$$\partial_a^2 \mathbf{\Psi}_{\mathrm{res}}^{\mathrm{COCA}} = -\mathbf{\nabla}_{\mathbf{x}} \Phi - \partial_a^2 \mathbf{\Psi}_{\mathrm{LPT}} - \partial_a^2 \mathbf{\Psi}_{\mathrm{ML}}$$

- With COCA:
 - Any emulation error will be corrected by solving the correct physical equation of motion.
 - Any ML algorithm can do the job!
 - Building a data model is a <u>safe use</u> of ML.

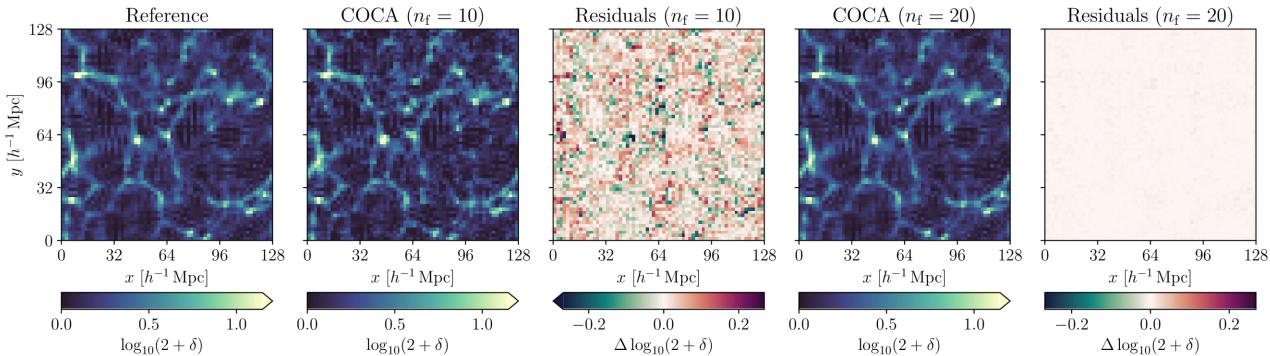

Bartlett, Chiarenza, Doeser & FL, 2409.02154

Time stepping and force calculations in COCA

 Our implementation of COCA in the Simbelmynë code uses the standard <u>Kick-Drift-Kick</u> (leapfrog) discretisation of the equation of motion.

https://simbelmyne.florent-leclercq.eu — Bitbucket:florent-leclercq/simbelmyne

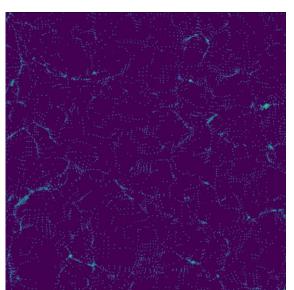
- Learning the new frame of reference means emulating the COLA residual momenta at every time step: $\mathbf{p}_{\mathrm{res}}^{\mathrm{COLA}} = \mathbf{p} \mathbf{p}_{\mathrm{LPT}}$.
- When the emulation error is small ($\mathbf{p}_{\mathrm{ML}} \approx \mathbf{p}_{\mathrm{res}}^{\mathrm{COLA}}$), particles are already at rest in the COCA frame of reference, so it is <u>unnecessary to compute forces at every step</u>.


A good frame-of-reference emulator therefore makes COCA cheaper than COLA.

Florent Leclerca

Results: COCA density field

Deaglan Bartlett (PDRA at IAP → Oxford)

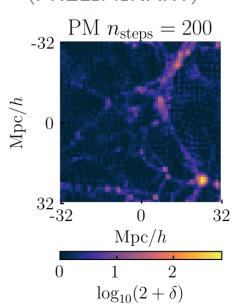

We reach percent-level accuracy up to $k=1\,h/{\rm Mpc}$ on standard correlations functions, using only 8 to 10 particle-mesh (PM) force evaluations (see the paper).

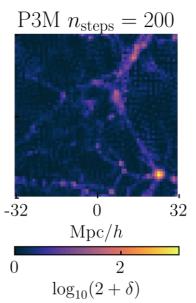
Bartlett, Chiarenza, Doeser & FL, 2409.02154

Force calculation and the small-scale accuracy of COLA/COCA

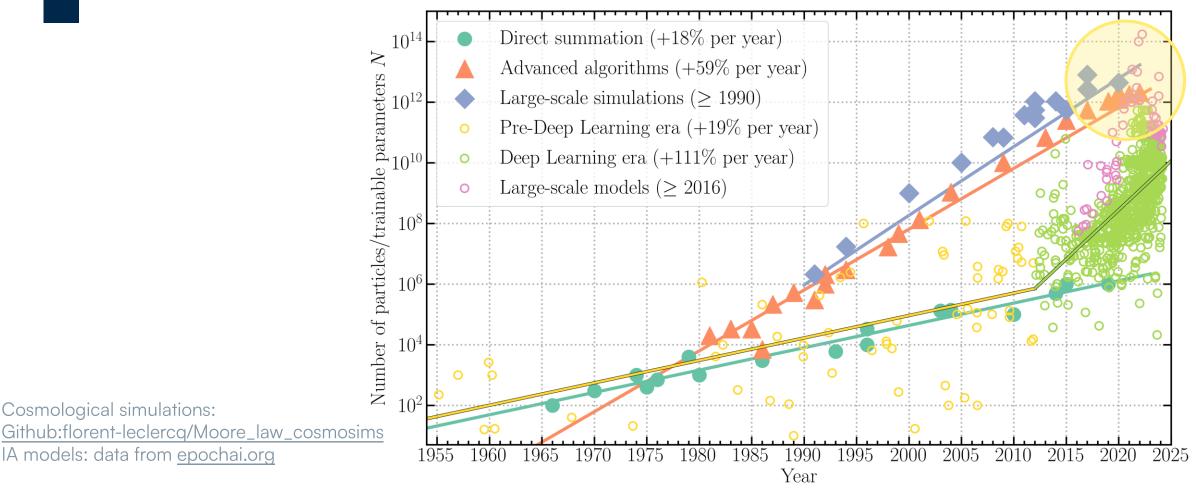
- A common misconception: COLA (or COCA) does not necessarily sacrifice <u>small-scale accuracy</u> for speed! (only implementations with PM forces usually do).
- Changing the frame of reference (to LPT or LPT+ML) can be done with <u>any force calculation</u> technique. Therefore, trajectories can be integrated to arbitrary accuracy.

Spectral sheet interpolation (PRELIMINARY)




Rémi Fahed (Research engineer at IAP)

Particle-particle particle-mesh (P3M) dynamics (PRELIMINARY)



Implemented as in List et al., 2309.10865

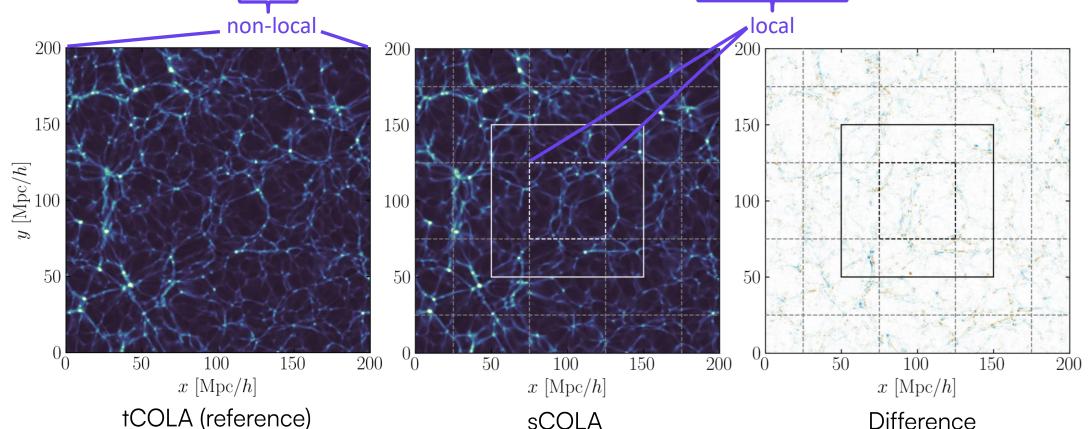
Implemented as in Dakin et al., 2112.01508

Comparative growth of methods and models

- Machine learning (ML) has caught up with the largest cosmological simulations!
- The real challenge for N-body simulations is Amdahl's law: latency kills the gains of parallelisation. Amdahl 1967, doi:10.1145/1465482.1465560

Cosmological simulations:

IA models: data from epochai.org


Perfectly parallel cosmological simulations using spatial comoving Lagrangian acceleration (sCOLA)

LPT so far

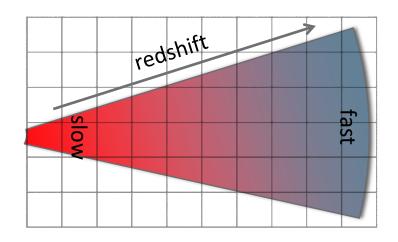
Can we decouple sub-volumes by using the large-scale solution?

(analytical solution) → sCOLA; soon ML solution → sCOCA

$$\partial_a^2 \mathbf{\Psi} = -\mathbf{\nabla}_{\mathbf{x}} \left[\Delta^{-1} \delta \right] \iff \partial_a^2 (\mathbf{\Psi} - \mathbf{\Psi}_{\text{l.s.}}) = -\mathbf{\nabla}_{\mathbf{x}} \left[\Delta^{-1} (\delta - \delta_{\text{l.s.}}) \right]$$

FL, Faure, Lavaux, Wandelt, Jaffe, Heavens, Percival & Noûs, 2003.04925

Publicly available implementation:
Bitbucket:florent-leclercq/simbelmyne/

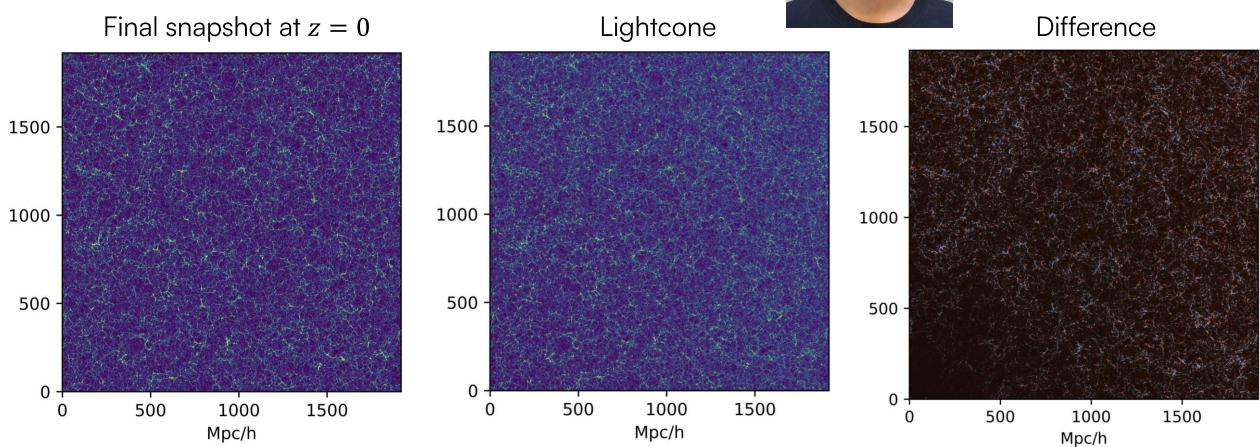

Lightcones and mock catalogues with sCOLA

 The workload in sCOLA is <u>perfectly parallel</u>, with a parallelisation potential factor:

$$p = s \left(\frac{L}{L_{\text{sCOLA}}}\right)^3$$

hardware "boost" factor due to small memory requirements

- Generation of <u>lightcones and mock</u> catalogues:
 - sCOLA boxes only need to run until they intersect the observer's past lightcone.
 - Most of the high-z volume will run faster than z = 0.
 - Many unobserved sCOLA boxes do not even have to run!
 - The wall-clock time limit is the time for running a single sCOLA box to z=0 at the observer's position.


- Additional benefits:
 - Grid computing: the algorithm is suitable for inexpensive, strongly asynchronous networks
 - Robustness to node failure

One sCOLA lightcone simulation

(PRELIMINARY)

Mayeul Aubin (doctoral researcher at IAP)

Conclusions - ML-safety and perfect parallelism

- <u>tCOCA</u> reimagines the use of neural networks for emulating *N*-body simulations:
 - It generalises the idea of tCOLA: running simulations in a <u>new frame of</u> reference. But it is not an emulator!
 - It solves the correct equations of motion, so it is a <u>ML-safe</u> use of neural networks. Explainability is not needed!
 - It makes simulations cheaper by skipping unnecessary force evaluations.
 But any <u>force calculation technique</u> (e.g. P3M) can be used.
- <u>sCOLA</u> uses the large-scale approximate solution to spatially split simulations in independent tiles:
 - It achieves <u>perfect parallelism</u> by fully removing the need for communications across the full computational volume.
 - It allows for fast <u>lightcone</u> and mock catalogue generation.
- Outlook: the large-scale ML solution can also be used to decouple sub-volumes, in the same spirit as sCOLA: the <u>sCOCA</u> framework!

Acknowledgements, credits, contacts

References:

- Simbelmynë: Leclercq, Jasche & Wandelt 2014, 1403.1260, Bayesian analysis of the dynamic cosmic web in the SDSS galaxy survey https://simbelmyne.florent-leclercq.eu
- **sCOLA**: <u>Leclercq et al. 2020, 2003.04925</u>, Perfectly parallel cosmological simulations using spatial comoving Lagrangian acceleration
- COCA: Bartlett, Chiarenza, Doeser & Leclercq 2024, 2409.02154, COmoving Computer Acceleration (COCA): Nbody simulations in an emulated frame of reference

www.florent-leclercq.eu

www.aquila-consortium.org

The author acknowledges the support of the French Agence Nationale de la Recherche (ANR), under grant ANR-23-CE46-0006 (project INFOCW).

The author does not acknowledge any support from a famous American soda company.