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The big picture: the Universe is highly structured

Planck collaboration (2013-2015) M. Blanton and the Sloan Digital Sky Survey (SDSS)




What we want to know from the large-scale structure

The large-scale structure is a vast source of knowledge:

« Cosmology:
ACDM: cosmological parameters and fests against alternatives,
Physical nature of the dark components,
Neutrinos: number and masses,
Geometry of the Universe,
Tests of General Relativity,
Initial conditions and link to high energy physics

» Astrophysics: galaxy formation and evolution as a function of their environment

Galaxy properties (colours, chemical composition, shapes),
Intrinsic alignments, intrinsic size-magnitude correlations


https://arxiv.org/abs/1403.1260

Interesting cosmological sighals are faint
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I Large-scale structure surveys roadmap

Stage |l

Stage |

O(PB) of data are
expected from each of
the “Stage IV” surveys
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I The growth of data, , , and

* We live in an age where everything grows quickly. But what is growing the
fastest?

Models?

Methods? Computers?
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The growth of data

» The number of observed galaxies has grown exponentially since 1910.
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Galaxy surveys: figure inspired by J. Peacock, data collected by J. Jasche
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The growth of

CPU Performance

« Traditional are «  Modern architectures are hybrid: cores +
reaching their physical limit: per-core : GPUs, reconfigurable
compute performance is slowing down. or dedicated chips (FPGAs/ASICs).
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CPU Performance: based on adjusted SPECfp® results GPU Performance: based on data from techpowerup.com 1
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http://spec.org/
https://www.techpowerup.com/gpu-specs/

The growth of

* We have just entered the era of :
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https://www.top500.org/
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Speedup Siaency

Parallelisation of A-body codes: the challenge

«  Compute cycles are no longer the scarce  * Numerical data models cannot merely rely on

resource. The cost is driven by computers becoming faster to reduce the
inferconnections. computational time.

* Amdahl's law: latency kills the gains of *  Most of the work on numerical cosmology so
parallelisation. far has focused on algorithms (such as tree,
Amdahl 1967, doi:10.1145/1465482.1465560 mu|ﬂpo|e’ and mesh methods) that reduce the
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https://dl.acm.org/doi/10.1145/1465482.1465560
https://github.com/florent-leclercq/Moore_law_cosmosims




The growth of

* Numerical
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simulations are the new way to express
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Method employed :

® Direct summation (+18% per year)
A Advanced algorithms (+59% per year)
- & Large-scale simulations (> 1990)
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Year
Cosmological simulations: Github:florent-leclercg/Moore_law_cosmosims
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https://github.com/florent-leclercq/Moore_law_cosmosims

Comparative growth of data and

* We are already using more particles in than there are galaxies in
the observable Universe!
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https://github.com/florent-leclercq/Moore_law_cosmosims

Perfectly parallel cosmological simulations
using spatial comoving Lagrangian acceleration (sCOLA)

« Can we decouple sub-volumes by using the large-scale analytical solution?
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i Publicly available implementation:
AP* FL, Faure, Lavaux, Wandelt, Jaffe, Heavens, Percival & Nots, 2003.04925

Bitbucket:florent-leclercg/simbelmyne/
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https://arxiv.org/abs/2003.04925
https://bitbucket.org/florent-leclercq/simbelmyne/src
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Why proper statistics matter

If your experiment needs statistics, you ought fo have done a ° Gibbs’s canonical and grand canonical
better experiment. ensembles, derived from the maximum

Ernest Rutherford entropy principle, fail to correctly predict
thermodynamic properties of real physical
systems (1884-1902).

« The predicted entropies are always larger
than the observed ones... there must exist
additional microphysical constraints:

Discreteness of energy levels: radiation: Planck
(1900), solids: Einstein (1907), Debye (1912),
Ising (1925), individual atoms: Bohr (1913)...

...Quantum mechanics: Heisenberg,

,; Schrédinger (1927)
Ernest Rutherford J. Willard Gibbs
(1871-1937) (1839-1903)

The first clues indicating the need for quantum physics were uncovered by seemingly
“unsuccessful” application of statistics!
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Why Bayesian inference in cosmology?

* Inference of signals: an ill-posed A natural progression in cosmology:

problem Observations of the homogeneous and
isotropic expansion (supernovee)

Anisotropies of linear perturbations (CMB)
Non-linear cosmic structure at small scales

Incomplete observations: finite resolution,
survey geometry, selection effects

Noise, biases, systematic effects and late times (galaxy surveys)
Cosmic variance

« Additional challenges for next-
generation data:

Difficult data analysis questions and/or hints
for new physics will first show up as fensions
between measurements

Non-linearity: 80% of the total signal will
come from non-linear structures

Model misspecification: Next-generation
surveys will be dominated by ? nknown)
systematics

21


https://arxiv.org/abs/0912.0201

A simple statement about building knowledge — Thisis (probably) nof the right persor

* Bayes’ theorem (1763): a statement about
how we analyse evidence and change
our minds at we get new information:

p(d) B
Demonstration: s
p(s,d) = p(s|d)p(d) = p(d, s) = p(d|s)p(s). U
* But why should we use it? Ra:;]zasrﬂ%f):e .
Bayes’ theorem is frivial and outdated. Pierre-Simon de Laplace

, 1749-1827
It measures belief. It says we can learn , ) :

even from missing or incomplete data,
from approximations, from ignorance. It
runs counter to the conviction that science
requires objectivity and precision.

After Laplace’s death, it was pronounced
dead and buried.

Picture taken at Bunhill Fields Burial Ground, City of London, 2021 22




Controversy: frequentism versus Bayesianism

« Two different conceptions of the nature of
probability and of scientific questions:

Frequentism: “Objective” probabilities linked fo
the frequency of repetitive random
phenomena. Questions related to specific and ’
reproducible experiments. B

Leonard J. Savage

Bayesianism: “Subjective” probabilities related (1891-1989) (19171971)
to the degree of belief given to a measurement
or a theory. Questions related to phenomena
and choices not involving the idea

of repetition.

[Fisher] sometimes published insults that only a saint could
entirely forgive.
Savage 1976, On Rereading R. A. Fisher

« Frequentist and Bayesian techniques give
the same results when working on large
samples. It is only on small numbers and low
occurrences that frequentist estimation and
Bayesian induction differ.

w2 7 Karl Pearson Ronald Aylmer Fisher Jerzy Neyman

N (1857-1936) (1890-1962) (1894-1981) 23



The theory that would not die

the theory j.?i
< that would
not die /g3
how cracked
*=<. the enigma code,
hunted down russian
submarines & emerged
triumphant from two &~
centuries of controversy
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And yet, after Laplace, Bayes’
theorem helped in many practical
situations:

Exonerate Alfred Dreyfus from
miscarriage of justice (Henri
Poincaré, 1899-1906),

Save the Bell Telephone system
from financial panic (Edward C.
Molina, 1907),

Predict earthquakes and tsunamis
(Harold Jeffreys, 1930-1940),

Break the German navy’s Enigma
cipher (Alan Turing, 1940-1944),

Prove that smoking causes lung
cancer (Jerome Cornfield, 1951),

Search for an H-bomb then a
submarine lost at sea (John P.

Craven, 1966-1968)

Sharon Bertsch McGrayne 2012

* The scientific battle lasted for 150 years,
until computers arrived.

The superiority of Bayesian methods is now a thoroughly
demonstrated fact in a hundred different areas. One can argue
with a philosophy; it is not so easy to argue with a computer
printout, which says to wus: “Independently of all your
philosophy, here are the facts of actual performance.”

Jaynes 2002, Probability Theory — The logic of science

Probability Theory

The Logic of Science

E. T. JAYNES

Jaynes 2002 Edwin Thompson Richard Threlkeld Cox
Jaynes (1922-1998) (1898-19917)

«  Cox-Jaynes theorem (1946): Any system to
manipulate “plausibilities”, consistent with
Cox’s desiderata, is isomorphic to Bayesian

probability theory. ,
A


https://bayes.wustl.edu/etj/prob/book.pdf
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Bayes at work in cosmology:
The BORG algorithm (Bayesian Origin Reconstruction from Galaxies)

Initial conditions Final conditions Observations

90° 90° 90°
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0.0 0.5 1.0 B
In(2 + 6¢)

67,224 galaxies, = 17 million parameters, 5 TB of primary data products, 10,000 samples,
~ 500,000 forward and adjoint gradient data model evaluations, 1.5 million CPU-hours

Jasche & Wandelt, 1203.3639; Jasche, FL & Wandelt, 1409.6308; Jasche & Lavaux, 1806.11117; Lavaux, Jasche & FL, 1909.06396
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https://arxiv.org/abs/1203.3639
https://arxiv.org/abs/1409.6308
https://arxiv.org/abs/1806.11117
https://arxiv.org/abs/1909.06396

What there is to learn:

Notion of information in probability theory

*  With Bayes’ theorem we know how to learn. .
But how much can we learn? The Fisher
information (1922) measures the amount of
information that a random variable contains
about an unknown parameter.

Nielsen 2020, 1808.08271

large Fisher information
sharp likelihood peak
small variance, high accuracy

small Fisher information
flat likelihood peak
large variance, low accuracy

Prasanta Chandra Calyampudi Radhakrishna
Mahalanobis (1893-1972) Rao (1920-2023)

1. »Ronald Aylmer Fisher
K@ (1890-1962)

Generalisations yield the field of information
geomeftry:

The Mahalanobis distance (1927) measures the
distance between a point and a distribution.

For a multi-dimensional problem, the Fisher
information generalises to a matrix, and
defines a metric: the Fisher-Rao metric (1945).

(...) | suggested the differential geometric approach in
my 1945 paper by considering the space of probability
distributions. | used Fisher information matrix in defining
the metric, so it was called Fisher-Rao metric.
Differential geometry was not well known at that fime,
and in order to compute the geodesic distance from the
metric, | had to learn the mathematics from papers on
relativity describing Einstein metric. It was only 30
years later, my work received attention (...).

Calyampudi Radhakrishna Rao, Scholarpedia

But is information/learning really geometric?

Divergences:  Dxkr,(P||Q) # Dk (Q||P) .


https://arxiv.org/abs/1808.08271
http://www.scholarpedia.org/article/Fisher-Rao_metric

What information is missing:

Notion of entropy in probability theory The notion of entropy is useful fo
communication, but also data compression.

Information enfropy: average amount of
information conveyed by an event, when
considering all possible outcomes.

Shannon 1948

| System Technical Journal

Iy, 1941

Pictures taken at the Science Museum, South Kensington, 2021

Why don’t you call it entropy? In the first place, a
mathematical development very much like yours already
exists in Boltzmann’s statistical mechanics, and in the second

place, no one understands entropy very well, so in any
discussion you will be in a position of advantage.
von Neumann to Shannon, about a name for “missing information”

Error probability versus rate - Shannon's theorem
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Shannon 1948, McKay 2003



https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://www.inference.org.uk/itprnn/book.pdf
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Bayesian experimental design:
Information-optimal or entropy-maximal acquisition of future cosmological data

* This is where to look if we want to measure * And this is where to look if we want to learn
cosmological parameters of ACDM... about dark energy...
500 T T T T T 0.7
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(Fisher information map for perturbative (Jensen-Shannon divergence between cosmic
changes in the cosmological model) web-type posteriors for different values of the

dark energy equation of state)
- Kosti¢, Jasche, Kodi Ramanah & Lavaux, 2107.00657 FL, Lavaux, Jasche & Wandelt, 1606.06758



https://arxiv.org/abs/2107.00657
https://arxiv.org/abs/1606.06758
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Some examples of Al in 2024...

* Large language models (and their + Text-conditional image generation:
limitations...) 1568 X 9762 -
ChatGPT 3.5 ChatGPT 4 1 53068 1 6

Florent Leclercq F) Florent Leclercq

What is 1568 times 97627 What is 1568 times 9762?

ChatGPT ChatGPT
1568 times 9762 equals 15,316,416. The result of multiplying 1568 by 9762
is 15,306,816. ©®

Florent Leclercq

Now what is the correct result? .
Analysis

ChatGPT
Apologies for the error. Let me

python

recalculate that for you.

1568 times 9762 equals 15,322,016. | Resut

15306816
Florent Leclercq

No, that's still wrong!

ChatGPT
My apologies for the mistake. Let me
calculate it again.

1568 times 9762 equals 15,318,816.

AP 30



The birth of Al

* The Dartmouth Summer Research Project
on Atrtificial Intelligence (1956).

'

4 . e, vl i TR Rt Yok . o A a1 Al A LA O /8 e ”‘,"
Marvin Minsky, Claude Shannon, Ray Solomonoff and other
scientists at the Dartmouth Summer Research Project on

Artificial Intelligence (Photo: Margaret Minsky)

* The proposal (31 August 1955) states:

We propose that a 2-month, 10-man study of artificial
intelligence be carried out during the summer of 1956 at
Dartmouth College in Hanover, New Hampshire. The
study is to proceed on the basis of the conjecture that
every aspect of learning or any other feature of
intelligence can in principle be so precisely described
that a machine can be made to simulate it. An attempt
will be made to find how fo make machines use
language, form abstractions and concepts, solve kinds
of problems now reserved for humans, and improve
themselves. We think that a significant advance can be
made in one or more of these problems if a carefully
selected group of scientists work on it together for a
summer.

J. McCarthy, M. L. Minsky, N. Rochester, C. E. Shannon

3l



Al algorithms: metaphors & methodology

« Humanity: classical theories of learning * Nature: evolution
Rule-based models, case-based Genetic algorithms
reasoning - Culture: epistemology
Learning by practice, “chunking” Scientific discovery
Reinforcement learning Ontologies , semantic web
Non-supervised learning . e.g. » Physics: statistical mechanics,
auto-encoders thermodynamics, quantum physics
»  Physiology: the brain Decision frees , Bayesian networks,
Artificial neuron : graphs .
perceptron Hamiltonian Monte Carlo
Multi-layer perceptrons , Information theory, distributed Al
, gradient back-
propagaﬂon Hidden Markov Models

Deep learning & convolutional neural networks

Symbolic Al: explainable but costly
Connectionist/numerical Al (machine learning): automatic but “black-box”

32
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The growth of

* ML methods are characterised by the number of

104 Pre-Deep Learning era (+19% per year) -
Deep Learning era (+111% per year)
Large-scale models (> 2016) -
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Cosmological simulations: Github:florent-leclercg/Moore_law_cosmosims 34
|A models: data from epochai.org



https://github.com/florent-leclercq/Moore_law_cosmosims
https://epochai.org/

DEBATING THE POTEN

Why machine learning for cosmology? ’.‘if ,{‘gﬁ”&:ﬁ,ﬁfﬁ"&

Last conference at The IAP (November 2023)
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What makes a good AI/ML model?
Associative versus causal reasoning in scientific research

»  With traditional machine learning, we obtain associative links between a latent
space and data. But this doesn’t mean we understand how nature works!
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* Purely data-driven machine learning may not be sufficient for research!
Causally consistent generative Al/ML models produce explanations.

Predictive Al/ML models are assistance systems for hypothesis generation.
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Machine-aided report of unknown data contaminations
Application to SDSS-III/BOSS (LOWZ+CMASS)
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Conclusion:
Hopes and challenges in information science for cosmology

The forward problem

. Numerical
models are the new
way to formulate theory
in data analysis.

. Scalability
(and energy cost!)

The inverse problem

Bayesian data
analysis Is established as a
fundamental theory of
learning.

Control of
external components in
modern Bayesian models
(in addition to likelihood
and prior) : training data,
posterior approximator...

The imitation problem

Machine-driven
scientific discovery
becomes conceivable.

Interpretability &

explainability, proof &
certifiability...
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