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What there is to learn and how to get there 0.70

0.651
A question of : first, avoid biases.
A question of : can numerical %00
forward models be used to push further -
than k = 0.15 h/Mpc? The full field o
contains much more information. 0.50
A question of : the property of
algorithms to handle a growing amount of 0.451
data under computational resource .
constraints. m 0407
The challenge is twofold: 0
" inthe data models: how can we best use | | R | |
modern computers and their architecture? 2PCT. likelihood-based analysis
® inthe inference techniques: how can we B 2PCF, simulation-based inference
perform rigorous Bayesian reasoning given a CW probes, simulation-based inference

2PCF + CW probes, simulation-based inference

limited computational budget?

Full field, data assimilation

el FL & Heavens, 2103.04158
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https://arxiv.org/abs/2103.04158

Field-level cosmological inference:
Bayesian Origin Reconstruction from Galaxies (BORG)
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67,224 galaxies, = 17 million parameters, 5 TB of primary data products, 10,000 samples,
= 500,000 forward and adjoint gradient data model evaluations, 1.5 million CPU-hours

y Jasche & Wandelt, 1203.3639; Jasche, FL & Wandelt, 1409.6308; Jasche & Lavaux, 1806.11117; Lavaux, Jasche & FL, 1909.06396
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BORG is beyond the proof-of-concept stage

Since 2014, BORG has been routinely Density field reconstructions are in
applied to real state-of-the-art data. agreement with gold standard
Shapley complementary data (lensing, X-ray, CMB).
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y Jasche & Lavaux, 1806.11117; FL, Lavaux & Jasche, in prep. Lavaux, Jasche & FL, 1909.06396
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Some technical considerations

BORG is a complex framework (~80,000 lines Over the last few years, several cosmological
of C++ code, 10 developers over the last ten codes with features common to BORG (e.q.
years), differentiable N-body simulator, high-
" |tis compatible with modern popular tools dimensional sampler/optimiser) have been
such as Julia and JAX. written.
" But it has been designed to the core for MPI BORG vs out-of-the-shelf (PyTorch, TF, JAX)
multi-CPU capability, with multi-GPU .

Typical memory overconsumption that limits

capability currently under development. the resolution/scalability

" The forward and adjoint gradient models show =

. Challenging lack of homogeneity of
strong scaling on up to 1,000 cores.

frameworks (e.g. TF1 — TF2 — JAX).
The barrier for entry is high (challenging for a = Difficult multi-node capability.

~3 year PhD), but the scientific reward is
correspondingly high, especially for real data
applications.

= Complex management of dependencies,
possible subsequent issues with reproducibility.

= Lack of language flexibility (e.g. incompatibility
with Julia, C++).
My point of view: “no free lunch” —

Algorithms and codes will always need to be adapted to problems.
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Al algorithms: metaphors & methodology Symbolic Al, explainable but costly
Numerical Al/ML, automatic but “black-box”

Humanity: classical theories of learning Nature: evolution

" Rule-based models, case-based reasoning " Genetic algorithms (Holland 1975)

(Aamodt & Plaza 1994)

® Learning by practice, “chunking” (Newell & Culture: epistemology

Rosenbloom 1981) = Scientific discovery (Langley et al. 1987)
" Reinforcement learning (samuel 1959) " Ontologies (Powers & Turk 1989), semantic web
® Non-supervised learning (Feigenbaum 1963), €.g. Physics: statistical mechanics,
auto-encoders (Kramer 1991) thermodynamics, quantum physics
Physiology: the brain " Decision trees (Quinlan 1975), Bayesian
= Artificial neuron (Mccullogh & Pitts 1943), networks, graphs
perceptron (Rosenblatt 1958) " Hamiltonian Monte Carlo (buane et al. 1987)
" Multi-layer perceptrons (Rumelhart et al. 1986, ® Information theory, distributed Al (Demazeau &
Rumelhard & McClelland 1987), gradient back- Miiller 1989)
propagation (Rumelhart et al. 1986) = Hidden Markov Models (Baum 1966)

® Deep learning & convolutional neural
networks (Lecun et al. 2015, Goodfellow et al. 2016)
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Why machine learning for cosmology?

Find the information Build a posterior/evidence

Speed up & go beyond

approximations content approximator
Emulators Automatic data Implicit likelihood
compression inference

BOLFI, 6,000 simulations
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emuPK: Mootoovaloo, Jaffe, Information Maximising Neural Networks (IMNN): Charnock, Bayesian Optimisation for Likelihood-
Heavens & FL, 2105.02256 Lavaux & Wandelt, 1802.03537; Makinen et al., 2107.07405 Free Inference (BOLFI): FL, 1805.07152

My point of view: “If you have a hammer, everything looks like a nail.” —
Deep learning is not the solution to all problems.
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The Aquila Consortium

° Created in 2016. Currently 38 members from 8 countries
(Europe & Americas).

* Gathers people interested in developing Bayesian
pipelines and running analyses on cosmological data.

The Aquila consortium Projects  People  Publications  Talks  Software  Contact ~ Wiki Q
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The Aquila consortiu‘r:n for Bayesian Large-Scale Structure
inference

Our mission

We are an international collaboration of researchers interested in developing and applying cutting-edge statistical inference
techniques to study the spatial distribution of matter in our Universe. We embrace the latest innovations in information theory
and artificial intelligence to optimally extract physical information from data and use derived results to facilitate new
discoveries.

Get notified when new results are published [ EARUSISER

Our latest results

Simulating the
Universe on a mobile

Visit us at www.aquila-consortium.org
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Conclusion:
Hopes and challenges in data science for cosmology
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The forward problem The inverse problem The imitation problem
*  Hopes: Numerical *  Hopes: Field-level * Hopes: Machine-driven
models are the new inference is established scientific discovery

way to formulate and validated on real becomes conceivable.
theory in data analysis. survey data.

*  Challenges: Scalability *  Challenges: Control of » Challenges:
& design choices in external components in Interpretability &
implementations modern Bayesian explainability

models (in addition to
likelihood and prior) :
training data, posterior
approximator...
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