

Bayesian analyses of galaxy surveys

Florent Leclercq

www.florent-leclercq.eu

Imperial Centre for Inference and Cosmology
Imperial College London

Alan Heavens, Andrew Jaffe, George Kyriacou, Arrykrishna Mootoovaloo, James Prideaux-Ghee (Imperial College),

Jens Jasche (U. Stockhom),

Guilhem Lavaux, Benjamin Wandelt (IAP),

Wolfgang Enzi (MPA), Will Percival (U. Waterloo)

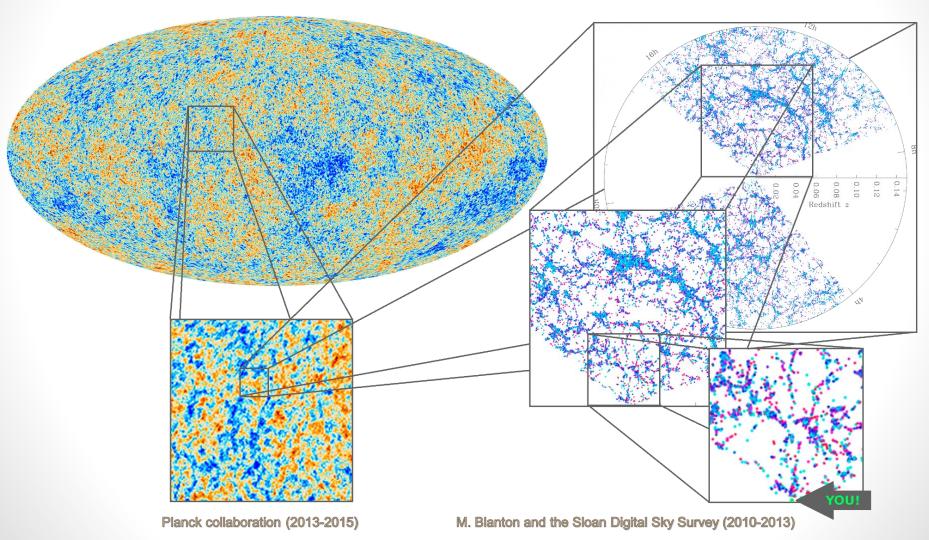
and the Aquila Consortium www.aquila-consortium.org

November 11th, 2019

Imperial College London

The big picture: the Universe is highly structured

You are here. Make the best of it...



What we want to know from the large-scale structure

The LSS is a vast source of knowledge:

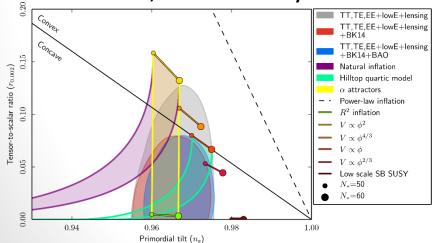
- Cosmology:
 - ACDM: cosmological parameters and tests against alternatives,
 - Physical nature of the dark components,
 - Neutrinos: number and masses,
 - Geometry of the Universe,
 - Tests of General Relativity,
 - Initial conditions and link to high energy physics
- Astrophysics: galaxy formation and evolution as a function of their environment
 - Galaxy properties (colours, chemical composition, shapes),
 - Intrinsic alignments, intrinsic size-magnitude correlations

We have theoretical and computer models...

Initial conditions: a Gaussian random field

$$\mathcal{P}(\delta^{i}|S) = \frac{1}{\sqrt{|2\pi S|}} \exp\left(-\frac{1}{2} \sum_{x,x'} \delta_{x}^{i} S_{xx'}^{-1} \delta_{x'}^{i}\right)$$

Everything seems consistent with the simplest inflationary scenario, as tested by Planck.



Planck 2018 X. 1807.06211

Structure formation:

numerical solution of the Vlasov-Poisson system for dark matter dynamics

$$\frac{\partial f}{\partial \tau} + \frac{\mathbf{p}}{ma} \cdot \nabla f - ma \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{p}} = 0$$
$$\Delta \Phi = 4\pi G a^2 \bar{\rho} \delta$$

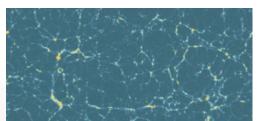
... how do we test these models against survey data?

$egin{array}{c} { m Redshift} \\ { m range} \end{array}$	$egin{array}{c} ext{Volume} \ ext{(Gpc}^3) \end{array}$	$k_{ m max} \ ({ m Mpc}/h)^{ ext{-}1}$	$N_{ m modes}$
0-1	50	0.15	10 ⁷
1-2	140	0.5	5x10 ⁸
2-3	160	1.3	10 ¹⁰

M. Zaldarriaga

J. Cham - PhD comics

- Precise tests require many modes.
- In 3D galaxy surveys, the number of modes usable scales as $k_{\rm max}^3$.



- The challenge: non-linear evolution at small scales and late times.
- The strategy:
 - Pushing down the smallest scale usable for cosmological analysis
 - Using a numerical model linking initial and final conditions

In other words: go beyond the linear and static analysis of the LSS.

Why Bayesian inference?

- Inference of signals = ill-posed problem
 - Incomplete observations: finite resolution, survey geometry, selection effects
 - Noise, biases, systematic effects
 - Cosmic variance

No unique recovery is possible!

"What is the formation history of the Universe?"

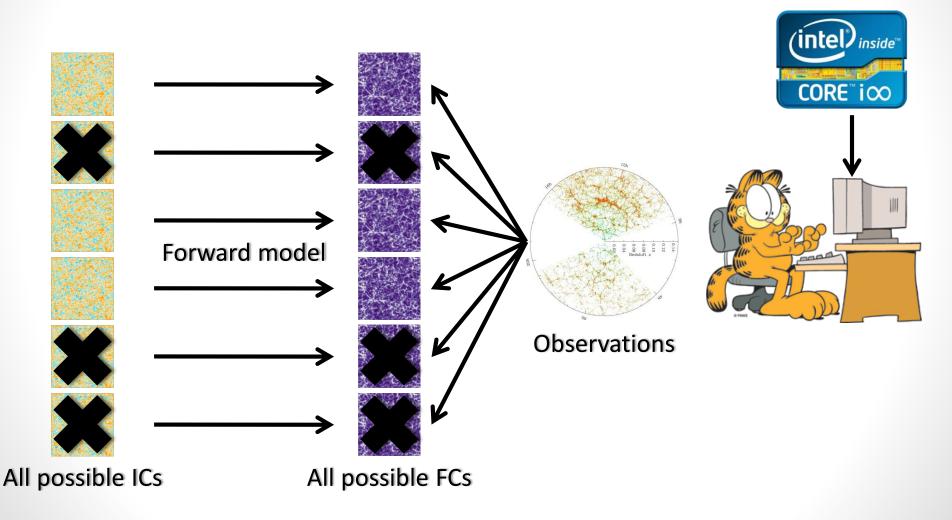
"What is the probability distribution of possible formation histories (signals) compatible with the observations?"

Bayes' theorem:
$$\mathcal{P}(s|d)\mathcal{P}(d) = \mathcal{P}(d|s)\mathcal{P}(s)$$

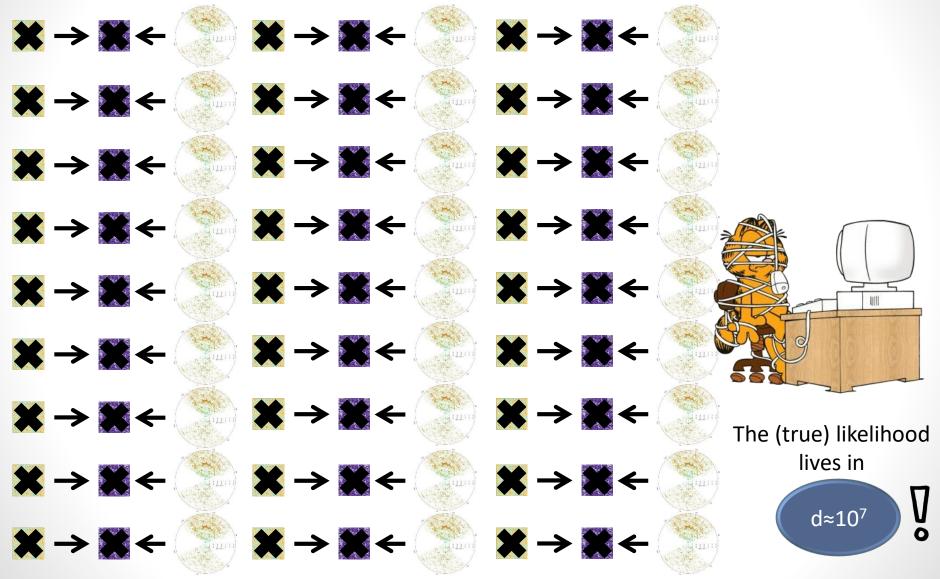
• Cox-Jaynes theorem: Any system to manipulate "plausibilities", consistent with Cox's desiderata, is isomorphic to So how do we do that?

(Bayesian) probability theory

Bayesian forward modelling: the ideal scenario



Bayesian forward modelling: the challenge



Likelihood-based solution: BORG

Bayesian Origin Reconstruction from Galaxies

Likelihood-based solution:

Exact statistical analysis Approximate data model

Data assimilation

Hamiltonian (Hybrid) Monte Carlo

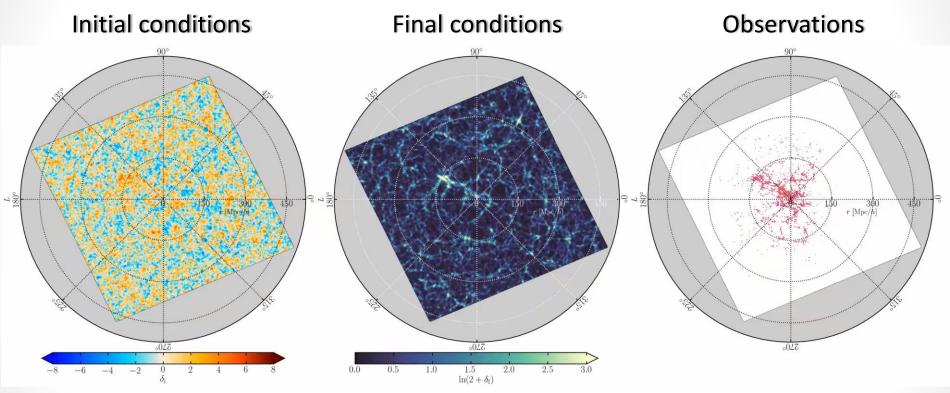
- Use classical mechanics to solve statistical problems!
 - The potential: $\psi(\mathbf{x}) \equiv -\ln p(\mathbf{x})$
 - The Hamiltonian: $H(\mathbf{x},\mathbf{p})\equiv \frac{1}{2}\mathbf{p}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{p} + \psi(\mathbf{x})$

$$(\mathbf{x}, \mathbf{p}) \implies \begin{cases} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \frac{\partial H}{\partial \mathbf{p}} = \mathbf{M}^{-1}\mathbf{p} \\ \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = -\frac{\partial H}{\partial \mathbf{x}} = -\frac{\mathrm{d}\psi(\mathbf{x})}{\mathrm{d}\mathbf{x}} \end{cases} \xrightarrow{\mathbf{gradients of the pdf}}$$

$$a(\mathbf{x}', \mathbf{x}) = e^{-(H'-H)} = 1$$
 acceptance ratio unity

- HMC beats the curse of dimensionality by:
 - Exploiting gradients
 - Using conservation of the Hamiltonian

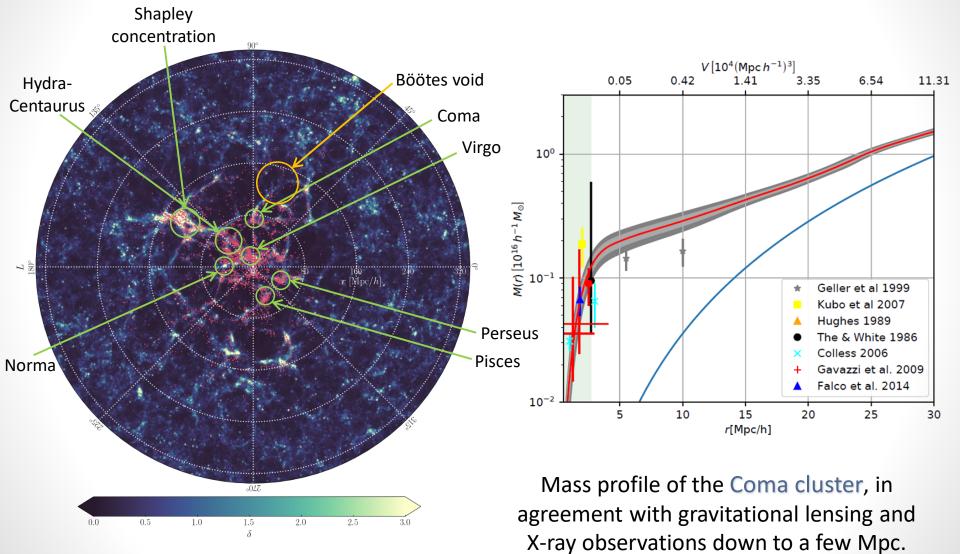
BORG at work: Bayesian chrono-cosmography



Supergalactic plane

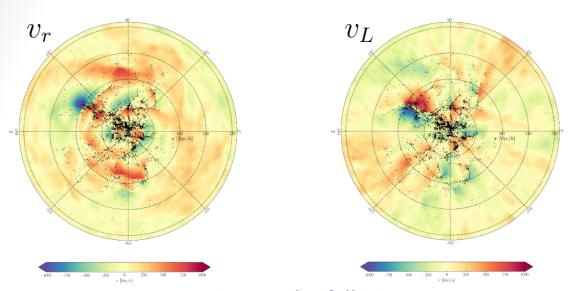
67,224 galaxies, ≈ 17 million parameters, 5 TB of primary data products, 10,000 samples, ≈ 500,000 forward and adjoint gradient data model evaluations, 1.5 million CPU-hours

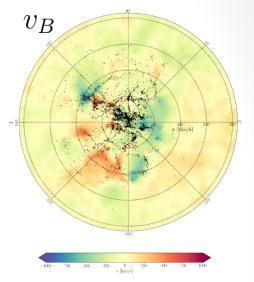
BORGPM density field: full non-linear dynamics



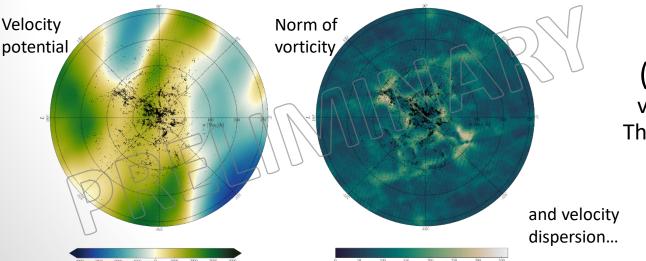
Velocity field in the supergalactic plane

with James Prideaux-Ghee (PhD student) & Alan Heavens





The gravitational infall of known structures can be observed.



In earlier work

Leclercq, Jasche, Lavaux,
(Wandelt & Percival 2017, 1601.00093),

vorticity was a postdiction.

Thanks to BORGPM (full non-linear dynamics),
we have now actual
measurements - with
uncertainties.

Mapping the Universe: epilogue?

J. Cham - PhD comics

Likelihood-free solution: SELFI

Simulator Expansion for Likelihood-Free Inference

Likelihood-based solution:
Exact statistical analysis
Approximate data model

Data assimilation

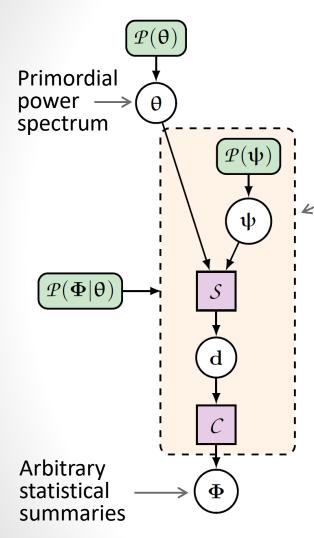
?

Likelihood-free solution:

Approximate statistical analysis
Arbitrary data model

Generative inference

SELFI: Method



- Gaussian prior + Gaussian effective likelihood
- Linearisation of the black-box around an expansion point + finite differences:

$$\mathbf{\hat{\Phi}}_{\mathbf{\theta}} pprox \mathbf{f}_0 +
abla \mathbf{f}_0 \cdot (\mathbf{\theta} - \mathbf{\theta}_0)$$

The posterior is Gaussian and analogous to a Wiener filter:

expansion point observed summaries
$$\boldsymbol{\gamma} \equiv \boldsymbol{\theta}_0 + \boldsymbol{\Gamma} \, (\nabla \mathbf{f}_0)^\intercal \, \mathbf{C}_0^{-1} (\boldsymbol{\Phi}_O - \mathbf{f}_0)$$

$$\boldsymbol{\Gamma} \equiv \left[(\nabla \mathbf{f}_0)^\intercal \, \mathbf{C}_0^{-1} \nabla \mathbf{f}_0 + \mathbf{S}^{-1} \right]^{-1}$$
 prior covariance covariance of summaries gradient of the black-box

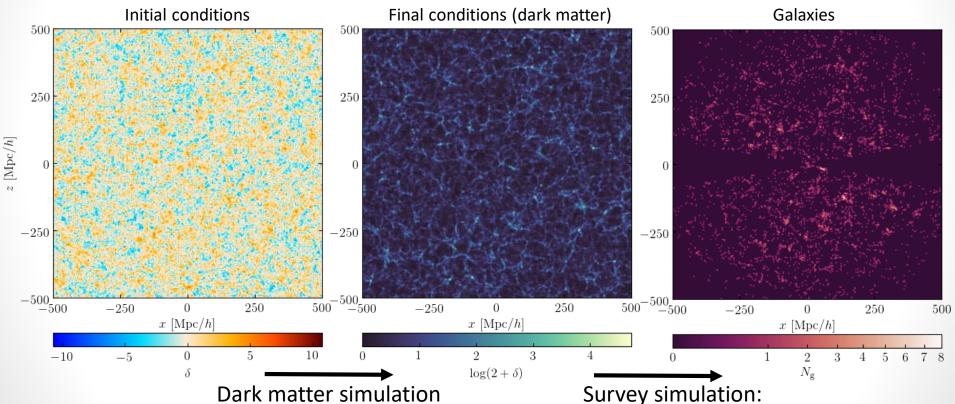
 \mathbf{f}_0 , \mathbf{C}_0 and $\nabla \mathbf{f}_0$ can be evaluated through simulations only. The number of required simulations is fixed *a priori*.

A black-box: Simbelmynë

Publicly available code:

https://bitbucket.org/florent-leclercq/simbelmyne/

I'm happy to explain the name later today...

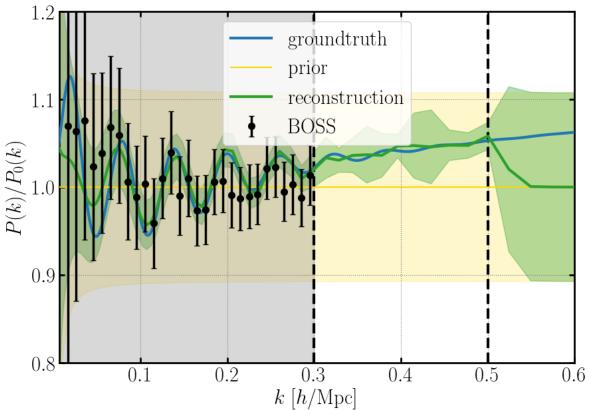


Tassev, Zaldarriaga & Eisenstein 2013, 1301.0322

with COLA

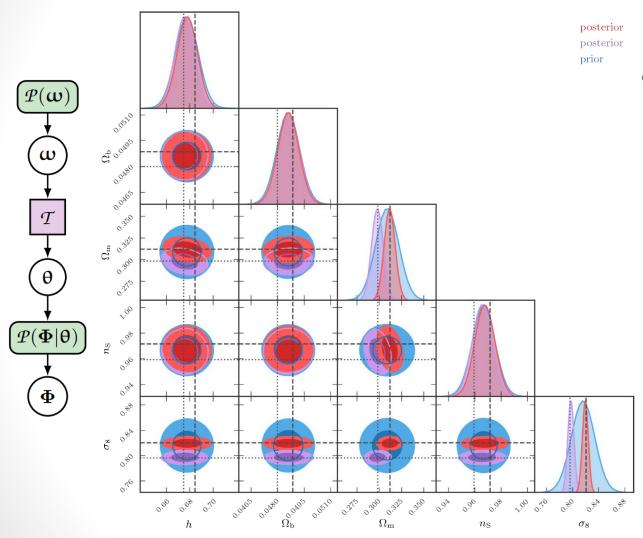
Redshift-space distortions, galaxy bias, selection effects, survey geometry, instrumental noise

SELFI + Simbelmynë: Proof-of-concept



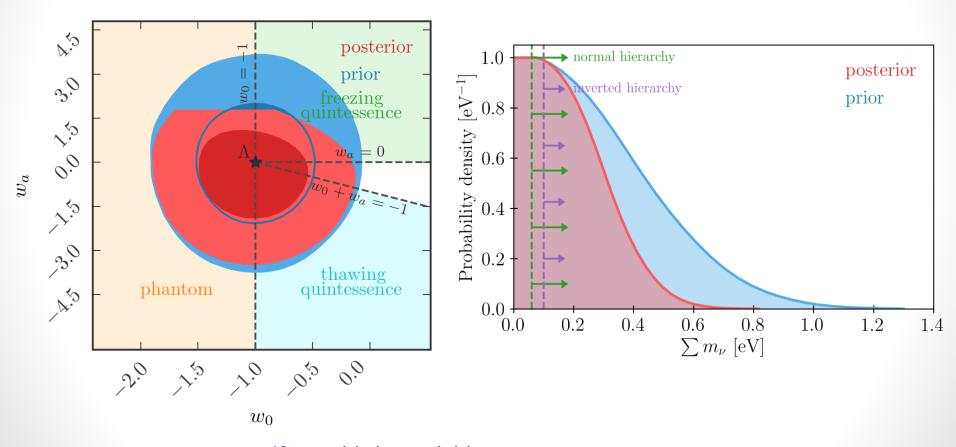
100 parameters are simultaneously inferred from a black-box data model $N_{
m modes} \propto k^3$: 5 times more modes are used in the analysis 1 (Gpc/h)³ only! Much more potential for Euclid data...

SELFI + Simbelmynë: Proof-of-concept



 Robust inference of cosmological parameters can be easily performed a posteriori once the linearised data model is learnt

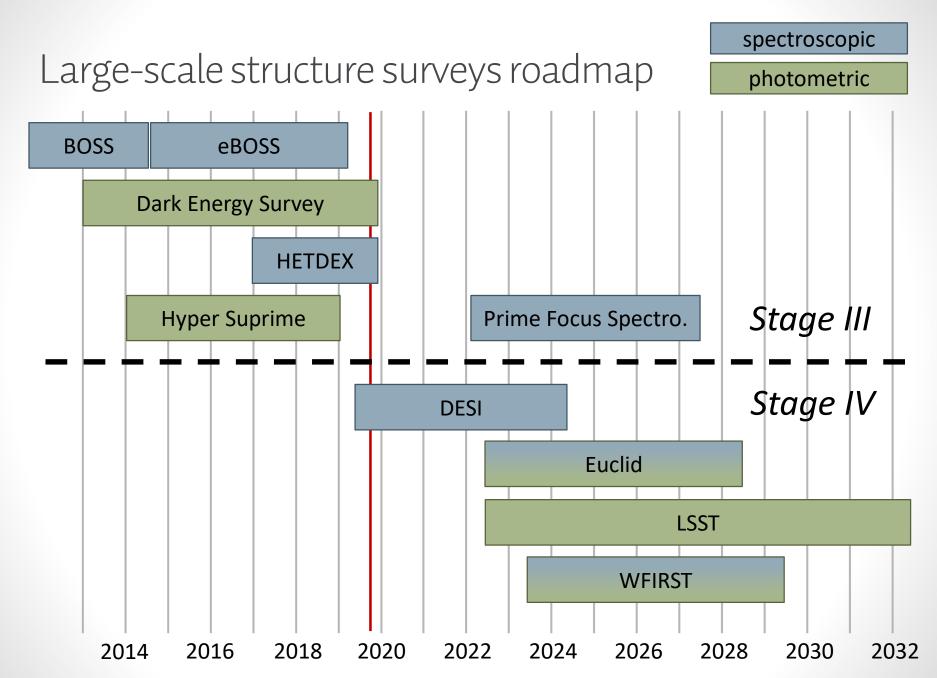
Dark energy and neutrino masses with SELFI



pyselfi is publicly available at https://github.com/florent-leclercq/pyselfi/

The Future: Opportunities & Challenges

DESI, Euclid, LSST, WFIRST, and more...



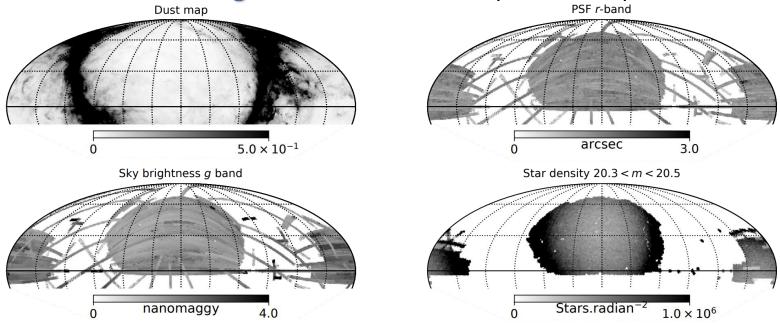
Data-intensive scientific discovery from galaxy surveys

- Next-generation surveys will be dominated by systematics
- 80% of the total signal will come from non-linear structures
- Challenging data analysis questions and/or hints for new physics will first show up as tensions between measurements

Can data analysts keep pace?

Accounting for known and unknown systematics

Some known foreground contaminants (11 in total)

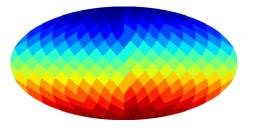


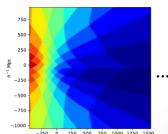
Forward model introduced by Jasche & Lavaux 2017, 1706.08971

A procedure to marginalise over unknown foreground

contaminations Robust likelihood introduced by Porqueres, Ramanah, Jasche & Lavaux 2018, 1812.05113

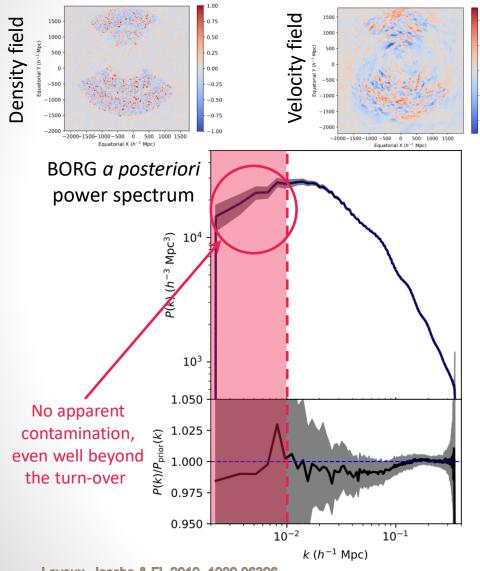
Map of patches on the sky...



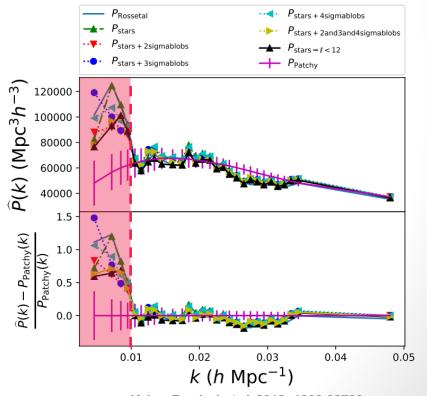


... extruded in 3D

Application to SDSS-III/BOSS (LOWZ+CMASS)



State-of-the-art with backward-modelling technique (mode subtraction)

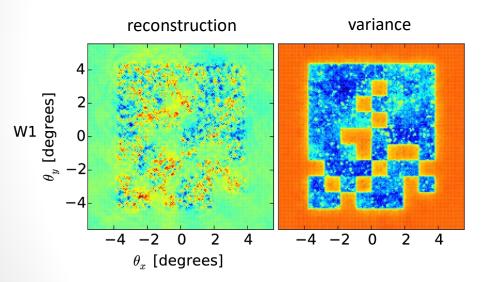


Kalus, Percival et al. 2018, 1806.02789

The Imperial weak lensing inference framework

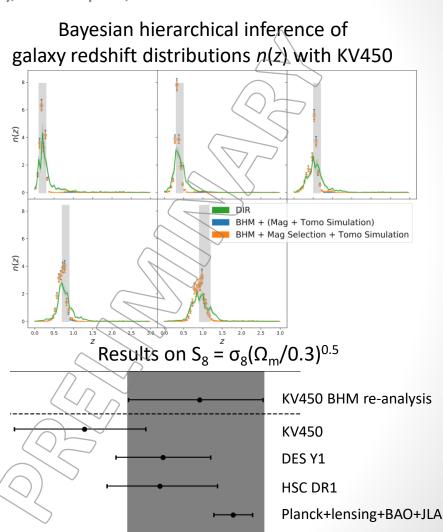
with George Kyriacou (PhD student), Arrykrishna Mootoovaloo (PhD student), Natàlia Porqueres, Alan Heavens & Andrew Jaffe

Joint inference of cosmic shear maps and power spectra/cosmology from CFHTLenS



 $\sum m_{
u} < 4.6~{
m eV}(95\%)~$ from lensing data alone

Alsing, Heavens & Jaffe 2016, 1607.00008



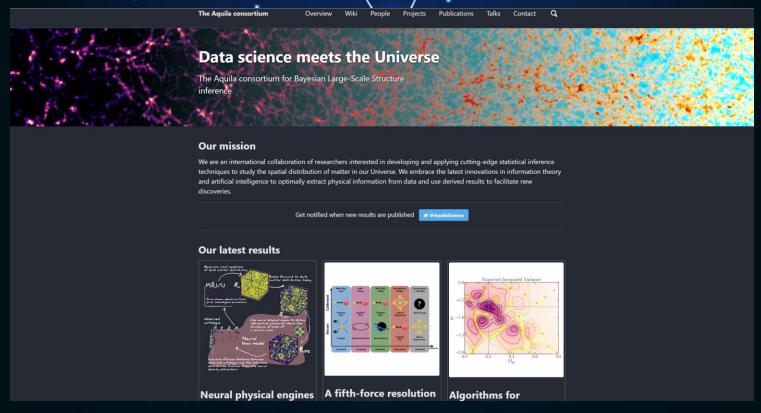
Kyriacou et al. in prep.

26

0.75

The Aquila Consortium

- Created in 2016. Currently 22 members from the UK, France, Germany, Sweden, Denmark & Canada.
- Gathers people interested in developing the Bayesian pipelines and running analyses on cosmological data.



Concluding thoughts

Likelihood-based solution:

Exact statistical analysis Approximate data model

Data assimilation

?

Likelihood-free solution:

Approximate statistical analysis
Arbitrary data model

Generative inference

- Bayesian analyses of galaxy surveys with fully non-linear numerical models is not an impossible task!
- A likelihood-based solution (BORG): general purpose reconstruction of dark matter from galaxy clustering, providing new measurements and predictions
- A likelihood-free solution (SELFI): algorithm for targeted questions, allowing the use of simulators including all relevant physical and observational effects

Concluding thoughts

Dark energy from the growth of

structure

The future: great science and challenges

Galaxy formation: bias model & likelihood Large volume, photometric redshifts Instruments modelling DESI, Euclid, LSST, WFIRST Bayesian large-scale structure analyses Cosmological measurements: Predictive cosmology: Cosmic expansion Velocity field Power spectrum (and governing X-ray cluster emission parameters) **Gravitational lensing** Gaussianity tests of the initial CMB secondary effects conditions

Dark matter?