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The big picture: the Universe is highly structured

2M. Blanton and the Sloan Digital Sky Survey (2010-2013)Planck collaboration (2013-2015)

You are here. Make the best of it…



How did structure appear in the Universe?

• What are the 
statistical properties of 
the initial conditions?

• What is the physics of 
dark matter and dark 
energy?
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• Precise tests require many 
modes.

• In 3D galaxy surveys, the number 
of modes usable scales as         .

• The challenge: non-linear evolution at 

and .

• The strategy:

• Inferring the initial conditions from 
galaxy positions

• Pushing down the smallest scale usable 
for cosmological analysis

4In other words: go beyond the and analysis of the LSS.

Testing cosmological models with the LSS

J. Cham – PhD comics

Redshift 
range

Volume
(Gpc3)

kmax

(Mpc/h)-1
Nmodes

0-1 50 0.15 107

1-2 140 0.5 5x108

2-3 160 1.3 1010

M. Zaldarriaga



All possible FCsAll possible ICs

Forward model = N-body simulation + Halo occupation + 
Galaxy formation + Feedback + …

Forward model

Observations
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Bayesian forward modeling: the ideal scenario
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Bayesian forward modeling: the ideal scenario



LIKELIHOOD-BASED SOLUTION: BORG
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Likelihood-based solution: BORG
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ObservationsFinal conditionsInitial conditions

334,074 galaxies, ≈ 17 millions parameters, 3 TB of primary data products, 
12,000 samples, ≈ 250,000 data model evaluations, 10 months on 32 cores

Jasche, FL & Wandelt 2015, arXiv:1409.6308



Evolution of cosmic structure

9Jasche, FL & Wandelt 2015, arXiv:1409.6308



Dark matter stream density

10FL, Jasche, Lavaux, Wandelt & Percival 2017, JCAP in press



Velocity field

11FL, Jasche, Lavaux, Wandelt & Percival 2017, JCAP in press



Cosmic web elements: some algorithms

• “ ” focus 
on one element at a time

/

• “ ” dissect the 
cosmic web all at once
• The (tidal field tensor)

(Lagrangian displacement 
field, potential structures)

(particle crossings)

(Lagrangian displacement 
field, potential and vortical
structures)
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Hahn et al. 2007, arXiv:astro-ph/0610280Neyrinck 2008, arXiv:0712.3049
Sutter et al. 2015, arXiv:1406.1191

FL, Jasche, Lavaux, Wandelt & Percival 2017

and manyothers…

Falck, Neyrinck & Szalay 2012, arXiv:1201.2353

Sousbie 2011, arXiv:1009.4015
Sousbie et al. 2011, arXiv:1009.4014

Lavaux & Wandelt 2010, arXiv:0906.4101



FL, Jasche & Wandelt 2015a, arXiv:1502.02690

FL, Lavaux, Jasche & Wandelt 2016, arXiv:1606.06758 13
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How is information propagated?
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Shannon entropy

in shannons (Sh)

FL, Jasche & Wandelt 2015a, arXiv:1502.02690

(T-web, entropy, relative entropy)

FL, Jasche & Wandelt 2015b, arXiv:1503.00730

(decision theory for structure classification)

FL, Lavaux, Jasche & Wandelt 2016, arXiv:1606.06758

(mutual information, classifier utilities)

FL, Jasche, Lavaux, Wandelt & Percival 2017

(phase-space structure of dark matter)

More about cosmic web analysis:

FL, Jasche & Wandelt 2015a, arXiv:1502.02690



LIKELIHOOD-FREE SOLUTION
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Why is likelihood-free rejection so expensive?

1. It rejects most samples when    is small

2. It does not make assumptions about the 
shape of 

3. It uses only a fixed proposal distribution, 
not all information available

4. It aims at equal accuracy for all regions 
in parameter space

16

Effective likelihood approximation:



Proposed solution

1. It rejects most samples when    is small

2. It does not make assumptions about the 
shape of 

3. It uses only a fixed proposal distribution, 
not all information available

4. It aims at equal accuracy for all regions 
in parameter space

17Gutmann & Corander JMLR 2016, arXiv:1501.03291

Bayesian optimisationfor likelihood-free inference (BOLFI)



Regressing the effective likelihood (points 1 & 2)
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1. “It rejects most samples when    is small”

• Keep all values

2. “It does not make assumptions about the shape of        ”

• Model the conditional distribution of distances given this 
training set



Data acquisition (points 3 & 4)
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Data acquisition (points 3 & 4)

3. “It uses only a fixed proposal distribution, not all information 
available”

• Samples are obtained from sampling an 

, using the regressed 
effective likelihood

4. “It aims at equal accuracy for all regions in parameter space”

• The finds a compromise between
exploration (trying to find new high-likelihood regions)

& exploitation (giving priority to regions where the distance to the observed 

data is already known to be small)

(decision making 
under uncertainty) can then be used
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DataModel

Acquisition function

Bayes’s theorem



Likelihood-free large-scale structure inference
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• 1100 large-scale
structure 
simulations

• ≈107 hidden 
variables

with W. Enzi & J. Jasche



Likelihood-free large-scale structure inference
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This proof-of-concept has been performed 
completely blindly. 

with W. Enzi & J. Jasche



OPTIMISING THE DATA MODEL

WITH SCOLA
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tCOLA: COmoving Lagrangian Acceleration (temporal domain)

• Write the displacement vector as:

• Time-stepping (omitted constants and Hubble expansion):
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: :

Tassev & Zaldarriaga 2012, arXiv:1203.5785
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Tassev, Zaldarriaga & Einsenstein 2013, arXiv:1301.0322
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sCOLA:
Extension to the 
spatial domain1
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sCOLA“in space and time”

Tassev, Eisenstein, Wandelt & Zaldarriaga 2015, arXiv:1502.07751



Using sCOLA to parallelize N-body sims

Parallelisation potential:
• Subvolumes…

• do not need to 
communicate,

• can even be run out of 
order!

• Factor        overhead due to 
boundary regions.

• But                      N-body sims 
can be done

.
speed-up of 

• Potential parallelisation 
speed-up: 

26with B. Faure (master project), B. Wandelt, W. Percival & M. Zaldarriaga



Constructing lightcones

• Subvolumes only need to run until they 
intersect the observer’s past lightcone.

• Most of the high- volume will be 
faster than          .

• Many unobserved subvolumes do not 
even have to run!

• The wall-clock time limit is the time for 
running a single                      box to      
at the observer position.

• Leads to , especially 
for deep surveys.

27with B. Faure (master project), B. Wandelt, W. Percival & M. Zaldarriaga



Summary

• A likelihood-based method for principled analysis of galaxy surveys:

• Simultaneous analysis of the morphology and formation history of the 
large-scale structure.

• Characterization of the dynamic cosmic web underlying galaxies.

• A likelihood-free method for models where the likelihood is intractable 
but simulating is possible: 

• Number of required simulations reduced by several orders of magnitude.

• The approach will allow to 

, including all relevant physical and observational effects.

• Optimisation of the data model using 

• Enormous parallelisation potential for dark matter simulations.

• Further speed-up expected for realistic synthetic observations.
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