Bayesian large-scale structure inference and cosmic web analysis

Florent Leclercq

Institute of Cosmology and Gravitation, University of Portsmouth

December 8th, 2015

Previously:

Institut d'Astrophysique de Paris

Institut Lagrange de Paris

École polytechnique ParisTech - Université Paris-Saclay

In collaboration with:

Nico Hamaus (LMU), Jens Jasche (ExC Universe, Garching), Guilhem Lavaux (IAP), Emilio Romano-Díaz (U. Bonn), Paul M. Sutter (Trieste/Ohio State U.), Benjamin Wandelt (IAP/U. Illinois)

The big picture: the Universe is highly structured

You are here. Make the best of it...

How did structure appear in the Universe?

A joint problem!

- How did the Universe begin?
 - What are the statistical properties of the initial conditions?
- How did the large-scale structure take shape?
 - What is the physics of dark matter and dark energy?

We have theoretical and computer models...

• Initial conditions: a Gaussian random field

$$\mathcal{P}(\delta^{\mathbf{i}}|S) = \frac{1}{\sqrt{|2\pi S|}} \exp\left(-\frac{1}{2}\sum_{x,x'}\delta^{\mathbf{i}}_{x}S^{-1}_{xx'}\delta^{\mathbf{i}}_{x'}\right)$$

Everything seems consistent with the simplest inflationary scenario, as tested by Planck.

Planck 2015 XX, arXiv:1502.02114

 Structure formation: numerical solution of the Vlasov-Poisson system for dark matter dynamics

$$\frac{\partial f}{\partial \tau} + \frac{\mathbf{p}}{ma} \cdot \nabla f - ma \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{p}} = 0$$
$$\Delta \Phi = 4\pi \mathbf{G} a^2 \bar{\rho} \delta$$

Y. Dubois & S. Colombi (IAP)

But some questions remain

- 1. How do we **test** these frameworks?
 - Usually the two problems of initial conditions and structure formation are addressed in isolation.
 - Ideally, galaxy surveys should be analyzed in terms of the joint constraints that they place on these two questions.

2. How did this happen in **Our** Universe?

1. How do we test our models?

Redshift Volume $N_{
m modes}$ $k_{
m max}$ (Gpc^3) $({
m Mpc}/h)^{-1}$ range 10^{7} 0-1 50 0.15 1-2 0.5 5x10⁸ 140 1010 2-3 160 1.3

M. Zaldarriaga

Precise tests require many

J. Cham – PhD comics

- modes.
- In 3D galaxy surveys, the number of modes usable scales as $k_{\rm max}^3$.

- The challenge: non-linear evolution at small scales and late times.
- per The strategy:
 - Pushing down the smallest scale usable for cosmological analysis
 - Inferring the initial conditions from galaxy positions

In other words: go beyond the linear and static analysis of the LSS.

2. How did this happen in our Universe?

This means that we cannot do, for example:

 Standard analyses: reduce the data to some statistics, then fit some model parameters

- We have to do a joint analysis of all aspects, including density reconstruction
 - Provides powerful constraints
 - Propagates uncertainties between all parts of the analysis
 - Avoids using the data twice
- It is a process known as data assimilation

Can we just fit the entire survey?

Why Bayesian inference?

- What do we need to fit the entire survey? Inference of signals = ill-posed problem
 - Incomplete observations: finite resolution, survey geometry, selection effects
 - Noise, biases, systematic effects
 - Cosmic variance

No unique recovery is possible!

"What is the formation history of the Universe?"

"What is the probability distribution of possible formation histories (signals) compatible with the observations?"

Bayes' theorem: $\mathcal{P}(s|d)\mathcal{P}(d) = \mathcal{P}(d|s)\mathcal{P}(s)$

Cox-Jaynes theorem: Any system to manipulate "*plausibilities*", consistent with Cox's desiderata, is isomorphic to (Bayesian) probability theory

Bayesian forward modeling: the ideal scenario

Forward model = N-body simulation + Halo occupation + Galaxy formation + Feedback + ...

(intel) inside

Bayesian forward modeling: the ideal scenario

BORG: Bayesian Origin Reconstruction from Galaxies

What makes the problem tractable:

- Sampler: Hamiltonian Markov Chain Monte Carlo method
- Data model: Gaussian prior Second-order Lagrangian perturbation theory (2LPT) – Poisson likelihood (and also: luminosity-dependent galaxy bias, automatic noise level calibration)

(galaxy catalog + meta-data: selection functions, completeness...)

Jasche & Wandelt 2013, arXiv:1203.3639 Jasche, FL & Wandelt 2015, arXiv:1409.6308 Samples of possible 4D states

Chrono-Cosmography

BORG at work: SDSS chrono-cosmography

The BORG SDSS run:

334,074 galaxies, ≈ 17 millions parameters, 12,000 samples, 3 TB, 10 months on 32 cores

Bayesian chrono-cosmography from SDSS DR7

Data

Jasche, FL & Wandelt 2015, arXiv:1409.6308

14

Bayesian chrono-cosmography from SDSS DR7

One sample

Jasche, FL & Wandelt 2015, arXiv:1409.6308

Bayesian chrono-cosmography from SDSS DR7

Posterior mean

Jasche, FL & Wandelt 2015, arXiv:1409.6308

Evolution of cosmic structure

Jasche, FL & Wandelt 2015, arXiv:1409.6308

17

The formation history of the Sloan Great Wall

Jasche, Romano-Díaz, FL & Wandelt, in prep.

THE NON-LINEAR REGIME OF STRUCTURE FORMATION

Non-linear filtering via constrained simulations

FL, Jasche, Sutter, Hamaus & Wandelt 2014, arXiv:1410.0355

Non-linear filtering via constrained simulations

FL, Jasche, Sutter, Hamaus & Wandelt 2014, arXiv:1410.0355

21

COLA: COmoving Lagrangian Acceleration

- Write the displacement vector as: $\, {f s} = {f s}_{
m LPT} + {f s}_{
m MC} \,$

• Time-stepping (omitted constants and Hubble expansion):

Tassev, Zaldarriaga & Einsenstein 2013, arXiv:1301.0322

Tassev & Zaldarriaga 2012, arXiv:1203.5785

Non-linear filtering improves the fit

FL, Jasche, Sutter, Hamaus & Wandelt 2014, arXiv:1410.0355

23

How is the Cosmic Web Woven?

Uncertainty quantification

Uncertainty quantification is crucial!

Can we propagate uncertainty quantification to cosmic web analysis?

Cosmic web classification procedures

void, sheet, filament, cluster?

• The **T-web**:

uses the sign of μ_1, μ_2, μ_3 : eigenvalues of the tidal field tensor, Hessian of the gravitational potential: $T_{ij}(\mathbf{x}) = \partial_i \partial_j \Phi(\mathbf{x})$

Hahn et al. 2007, arXiv:astro-ph/0610280

T-web structures inferred by BORG

FL, Jasche & Wandelt 2015, arXiv:1502.02690

T-web structures inferred by BORG

Initial conditions 400

FL, Jasche & Wandelt 2015, arXiv:1502.02690

Entropy of the structure types posterior $H\left[\mathcal{P}(\mathrm{T}(\vec{x}_k)|d)\right] \equiv -\sum_{i=0}^{3} \mathcal{P}(\mathrm{T}_i(\vec{x}_k)|d) \log_2(\mathcal{P}(\mathrm{T}_i(\vec{x}_k)|d)) \quad \text{in shannons (Sh)}$

Initial conditions

(more to come on the connection between cosmic web analysis and information theory)

A decision rule for structure classification

• Space of "input features":

 $\{T_0 = void, T_1 = sheet, T_2 = filament, T_3 = cluster\}$

• Space of "actions":

 $\{a_0 = \text{``decide void''}, a_1 = \text{``decide sheet''}, a_2 = \text{``decide filament''}, a_3 = \text{``decide cluster''}, a_{-1} = \text{``do not decide''}\}$

A problem of **Bayesian decision theory**: one should take the action which maximizes the utility $_3$

$$U(a_j(\vec{x}_k)|d) = \sum_{i=0} G(a_j|\mathbf{T}_i) \mathcal{P}(\mathbf{T}_i(\vec{x}_k)|d)$$

How to write down the gain functions?

• Without data, the expected utility is

 $U(a_j) = 1 - \alpha$ if $j \neq 1$ "Playing the game" $U(a_{-1}) = 0$ "Not playing the game"

- With $\alpha = 1$, it's a *fair game* \implies always play \implies "speculative map" of the LSS
- Values \alpha > 1 represent an aversion for risk
 increasingly "conservative maps" of the LSS

FL, Jasche & Wandelt 2015, arXiv:1503.00730

32

Inference of the dark matter phase-space sheet

- The dark matter phase-space sheet has been studied so far in simulations
- e.g. Neyrinck 2012, arXiv:1202.3364 Abel, Hahn & Kaehler 2012, arXiv:1111.3944 Shandarin, Habib & Heitmann 2012, arXiv:1111.2366
 - BORG infers Lagrangian
 dynamics in real data
 - This is opening the way to new confrontations between data and theory
 - Identified structures have a direct physical interpretation

Cosmic web classification procedures

void, sheet, filament, cluster?

The T-web:

uses the sign of μ_1, μ_2, μ_3 : eigenvalues of the tidal field tensor, Hessian of the gravitational potential: $T_{ij}(\mathbf{x}) = \partial_i \partial_j \Phi(\mathbf{x})$

Hahn et al. 2007, arXiv:astro-ph/0610280

• DIVA:

uses the sign of $\lambda_1, \lambda_2, \lambda_3$: eigenvalues of the shear of the Lagrangian displacement field: $R_{\ell m}(\mathbf{q}) = \partial_m \Psi_\ell(\mathbf{q})$

Lavaux & Wandelt 2010, arXiv:0906.4101

• ORIGAMI :

uses the dark matter "phase-space sheet" (number of orthogonal axes along which there is shell-crossing)

Falck, Neyrinck & Szalay 2012, arXiv:1201.2353

Lagrangian classifiers

now usable in real data!

Comparing classifiers

FL, Jasche, Lavaux & Wandelt, in prep.

FL, Lavaux, Jasche & Wandelt, in prep.

HINTS FROM THE DARK

Dark matter voids: pipeline

Why BORG?

Sparsity & Bias

Sutter *et al.* 2013, arXiv:1309.5087 Sutter *et al.* 2013, arXiv:1311.3301

How?

VIDE toolkit: Sutter et al. 2015, arXiv:1406.1191 www.cosmicvoids.net

based on ZOBOV: Neyrinck 2007, arXiv:0712.3049

38

BORG unveils many more voids

Void number function

Voids in constrained regions only

Voids are **Poissondominated** objects: 10x more voids require 100x more galaxies!

Reduction of statistical uncertainty in voids catalogs

Ellipticity distribution

Radial density profile

All catalogs are publicly available at <u>www.cosmicvoids.net</u> for follow-up projects.

For example, these voids should have an effect on CMB photons...

FL, Jasche, Sutter, Hamaus & Wandelt 2015, arXiv:1410.0355

How to detect secondary effects in the Cosmic Microwave Background?

Producing LSS-CMB observables

Templates for secondary effects in the CMB

• The full posterior is available for Hierarchical Bayesian analysis with G. Lavaux, J. Jasche, B. Wandelt

Summary & concluding thoughts

- A new method for principled analysis of galaxy surveys: Bayesian large-scale structure inference
 - Uncertainty quantification (noise, survey geometry, selection effects and biases)
 - Non-linear and non-Gaussian inference, with improving techniques
- Application to data: four-dimensional chrono-cosmography
 - Simultaneous analysis of the morphology and formation history of the large-scale structure
 - Physical reconstruction of the initial conditions
 - Characterization of the dynamic cosmic web underlying galaxies
 - Inference of cosmic voids at the level of the dark matter field
 - Cross-correlation of galaxy surveys and CMB data through kSZ/iSW/RS effects