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The big picture: the Universe is highly structured

You are here. Make the best of it...

ug

Planck collaboration (2013-2015) M. Blanton and the Sloan Digital Sky Survey (2010-2013)
Florent Leclercq Inference with generative cosmological models




Bayesian forward modeling: the ideal scenario

Forward model = N-body simulation + Halo occupation +
Galaxy formation + Feedback + ...
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Likelihood-based solution: BORG at work

uses Hamiltonian Monte Carlo (HMC) to explore the exact posterior
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334,074 galaxies, = 17 millions parameters, 3 TB of primary data products,
12,000 samples, = 250,000 data model evaluations, 10 months on 32 cores
Jasche, FL & Wandelt 2015, arXiv:1409.6308
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Velocity field
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FL, Jasche, Lavaux, Wandelt & Percival 2017, arXiv:1601.00093
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Cosmic web classifications
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FL, Jasche & Wandelt 2015a, arXiv:1502.02690
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FL, Lavaux, Jasche & Wandelt 2016, arXiv:1606.06758
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The Aquila Consortium

for Bayesian large-scale structure inference

* Created in 2016. Members from the UK, France, Germany &
Sweden.

* Gathers people interested in developing the Bayesian pipelines
and running analyses on cosmological data.
www.aquila-consortium.org

Aquila Overview Wiki People Projects Publications Contact
v -

" The Aquila consortium for Bayesian Large'S

W

Our mission: Data science meets the Universe

The Aquila consortium is an i i ion of interested in developing and applying cutting-edge statistical inference techniques to study
the spatial distribution of matter in our Universe. We embrace the latest innovations in information theory and artificial intelligence to optimally extract physical
information from data and use derived results to facilitate new discoveries.

Some results

Resimulating the Local Universe

This picture shows the result of a high resolution
N-body simulation which has been specifically designed to look like the Local
Universe. More precisely it depicts what is the sky of an observer which would be
located at the center of our galaxy and look at the entire sky. We use for that a
Mollweide projection, which is another way of representing the surface of a
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Let’s go back to the challenge...
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Approximate Bayesian Computation (ABC)

 Statistical inference for models where:
The likelihood function is intractable
Simulating data is possible

° General idea: find parameter values for which the distance
between simulated data and observed data is small

—~ o~

p(9|d) == p(9|d) where d(d(6)), d) is small

* Assumptions:
Only a small number of parameters are of interest

But the process generating the data is very general: a noisy non-

linear dynamical system with an unrestricted number of hidden
variables

Florent Leclercq Inference with generative cosmological models



Likelihood-free rejection sampling

* |terate many times:

Sample 0 from a proposal
distribution ¢(0)

Simulate d(#) according to
the data model

Compute distance d(d(f),d)
between simulated and
observed data

Retain 6 if d(d(f),d) <€,
otherwise reject

* Effective likelihood
approximation:

Florent Leclercg

Model space

v
Data space

e can be adaptively reduced
(Population Monte Carlo)
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Why is likelihood-free rejection so expensive?

1. It rejects most samples when ¢ is small
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in parameter space
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Proposed solution:

BOLFI: Bayesian Optimisation for Likelihood-Free Inference

1. It rejects most samples when ¢ is small
|:> Don’t reject samples: learn from

them!

2. It does not make assumptions about the

shape of L(0)

Model the distances, assuming the

average distance is smooth

3. It uses only a fixed proposal distribution,
not all information available

Use Bayes’ theorem to update the

proposal of new points

4. It aims at equal accuracy for all regions

in parameter space

|:> Prioritize parameter regions with
small distances to the observed data

Gutmann & Corander JMLR 2016, arXiv:1501.03291
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DISTANCE TO THE OBSERVED DATA

/5. REGRESSED
/ DISTANCE

PARAMETER

Related work in cosmology:

Alsing & Wandelt 2017, arXiv:1712.00012

(data compression for ABC)

Alsing, Wandelt & Feeney 2018, arXiv:1801.01497
(density estimation for ABC — DELFI)

Inference with generative cosmological models
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Regressing the eftective likelihood (points 1 & 2)
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1. “It rejects most samples when ¢ is small”

* Keep all values (6;,d;) d; = d(d(6;),d)

2. "It does not make assumptions about the shape of L(6)”

* Model the conditional distribution of distances given this
training set
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Data acquisition (points 3 & 4)

3. “It uses only a fixed proposal distribution, not all information
available”

« Samples are obtained from sampling an adaptively-

constructed proposal distribution, using the regressed
effective likelihood

4. “It aims at equal accuracy for all regions in parameter space”

* The acgquisition function finds a compromise between
exploration (trying to find new high-likelihood regions)

& exploitation (giving priority to regions where the distance to the observed
data is already known to be small)

* Bayesian optimisation (decision making
under uncertainty) can then be used Model Data

Acquisition function

Bayes’s theorem
Florent Leclercq Inference with generative cosmological models
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Data acquisition
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In higher dimension...

Bayesian Optimization in Action

Target Function

Gausian Process Predicted Mean
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F. Nogueira, https://github.com/fmfn/BayesianOptimization
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Application: Analysis of the JLA supernova sample

JLA Hubble diagram
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FL 2018, arXiv:1805.07152
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BOLFI, 6.000 simulations

Betoule et al. 2014, arXiv:1401.4064
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An acquisition function designed for ABC

Expected Improvement
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Jarvenpaa et al. 2017, arXiv:1704.00520
FL 2018, arXiv:1805.07152
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Summary

Inference with generative cosmological models

Exact statistical inference Approximate statistical inference
Approximate physical model Exact physical model
* Alikelihood-based method for principled analysis of galaxy surveys:

Hamiltonian Monte Carlo (BORG)

Simultaneous analysis of the morphology and formation history of the large-
scale structure.

Characterization of the dynamic cosmic web underlying galaxies.

* A likelihood-free method for models where the likelihood is intractable
but simulating is possible:

Regression of the distance + Bayesian optimisation (BOLFI)

Number of required simulations reduced by several orders of magnitude.

The approach will allow to ask targeted guestions to cosmological
data, including all relevant physical and observational effects.
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