Simulation-based large-scale
structure inference

Florent Leclercg
Imperial College Research Fellow
Imperial Centre for Inference and Cosmology

+ January 23, 2018
++ In collaboration with:
+_+_+ Wolfgang Enzi (MPA),
. Baptiste Faure (Ecole polytechnique),
¥ Jens Jasche (ExC Garching/U. Stockholm)

ICIC Imperial College

Imperial Centre L d
for Inference & Cosmology On On



Bayesian forward modeling: the ideal scenario

Forward model = N-body simulation + Halo occupation +
Galaxy formation + Feedback + ...
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V' > S Summary statistic = power spectrum —
R e bispectrum — line correlation function
All possible ICs All possible FCs — clusters — voids...
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Bayesmn forward modehng the Challenge
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LIKELIHOOD-FREE
LARGE-SCALE STRUCTURE INFERENCE
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Approximate Bayesian Computation (ABC)

 Statistical inference for models where:
The likelihood function is intractable
Simulating data is possible

° General idea: find parameter values for which the distance
between simulated data and observed data is small

—~ o~

p(9|d) == p(9|d) where d(d(6)), d) is small

* Assumptions:
Only a small number of parameters are of interest

But the process generating the data is very general: a noisy non-

linear dynamical system with an unrestricted number of hidden
variables
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Likelihood-free rejection sampling

Model space

* |terate many times:

Sample 0 from a proposal
distribution ¢(0)

Simulate d(#) according to
the data model

Compute distance d(d(f),d)
between simulated and
observed data

Retain 6 if d(d(f),d) <€,

otherwise reject v
* Effective likelihood Data space
approximation:
N
1 -
L(0) ~ ~ ZH (d(d(@), d) < e) e can be adaptively reduced
i=1 (Population Monte Carlo)
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Why is likelihood-free rejection so expensive?

1. It rejects most samples when € is small
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3. ltusesonly afixed proposal distribution, § iﬁfa,_ THRESHOLD
not all information available £
- PARAMETER

N
1 -
L)~ =31 (d(d(@), d) < e)
. : N <4
4. It aims at equal accuracy for all regions i=1
in parameter space
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Proposed solution
Bayesian optimisation for likelihood-free inference (BOLFI)

1. It rejects most samples when € is small

|:> Don’t reject samples: learn from
them!

2. It does not make assumptions about the
shape of L(0)

Model the distances, assuming the
average distance is smooth

9/t REGRESSED
' DISTANCE

3. It uses only a fixed proposal distribution,
not all information available

DISTANCE TO THE OBSERVED DATA

Use Bayes’ theorem to update the PARAVETER
proposal of new points ,
Related work in cosmology:
. . Alsing & Wandelt 2017, arXiv:1712.00012
4. ltaims at equal accuracy for all regions (data compression for ABC)

In pa ra meter Space Alsing, Wandelt & Feeney 2018, arXiv:1801.01497
|:> Prioritize parameter regions with (density estimation for ABC — DELFI)
Sm@[m dﬁgﬁ;@m@@s ﬁ@ {th@ @bs@w@d @{]@{t@ Enzi, Jasc.he &-FL 2018, to be su.bmitted .

(ABC with linear expansion of the effective
Gutmann & Corander JMLR 2016, arXiv:1501.03291 likelihood)
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Regressing the effective likelihood (points 1 & 2)
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1. “It rejects most samples when ¢ is small”

* Keep all values (6;,d;) d; = d(d(6;),d)

2. "It does not make assumptions about the shape of L(6)”

* Model the conditional distribution of distances given this
training set
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Gaussian process regression (a.k.a. kriging)

2.0 =
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¢ Why? p(ﬂX) X exp [_% Z(f(xm) - ,[L(Xm))TK(Xm, X'n)(.f(x'n) - J[L(Xn))]
It is a general purpose regressor: it N
will be able to deal with a large K (X, %) = Cy X exp [—5 ( " ) ] + Oy
variety of complex/non-linear S —

features of likelihood functions. KolCh) K (C2) Kan(Cs)

It provides not only a prediction, )
but also the uncertainty of the (%0 X, ) o exp [_% (f;(iz()x)) ]
regression. i

It allows to extrapolate in regions
where we have no data points.

The prediction and uncertainty for a new point is:

o(x.) = (%) + K (% Xn) K (X, %) (= 1(X))

o(x*)2 = K(x,,x,) — K(x*,Xm)TKfl(xm,xﬂ)K(x*,Xn)

Hyperparameters C,, C,, C; are automatically
Rasmussen & Williams 2006 adjusted during the regression.
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Data acquisition
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Data acquisition (points 3 & 4)

3. “It uses only a fixed proposal distribution, not all information
available”

« Samples are obtained from sampling an adaptively-

constructed proposal distribution, using the regressed
effective likelihood

4. “It aims at equal accuracy for all regions in parameter space”

* The acgquisition function finds a compromise between
exploration (trying to find new high-likelihood regions)

& exploitation (giving priority to regions where the distance to the observed
data is already known to be small)

* Bayesian optimisation (decision making
under uncertainty) can then be used Model Data

Acquisition function

Bayes’s theorem
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In higher dimension...

Bayesian Optimization in Action

Gausian Proces Predicted Mean Target Function
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F. Nogueira, https://github.com/fmfn/BayesianOptimization
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Likelihood-free large-scale structure inference
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Likelihood-free large-scale structure inference

log p(w|d)
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This proof-of-concept has been performed

FL, Jasche & Enzi (in prep.) CompletEIy bllndly
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Summary

* A likelihood-free method for models where the likelihood
is intractable but simulating is possible:
Regression of the distance + Bayesian optimisation

Number of required simulations reduced by several orders of
magnitude.

The approach will allow to @sk targeted guestions to

cosmological data, including all relevant physical and
observational effects.

* Optimisation of the data model using tCOLA + sCOLA

Enormous parallelisation potential for dark matter simulations.
Further speed-up expected for realistic synthetic observations.
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