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Simulating collisionless dark matter fluids
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“Simulation:
1. a. The action or practice of simulating, with intent to deceive;
false pretence, deceitful profession. (...)
2. A false assumption or display, a surface resemblance or imita-
tion, of something. (...)”
— The Oxford English Dictionary
Quoted by Peter Coles (2014)

Abstract
This technical appendix describes the implementation of the simulation codes used in this thesis. It reviews the
particle-mesh approach for simulating a collisionless cold dark matter fluid, as well as the cola modification. The
generation of initial conditions using Lagrangian perturbation theory is also discussed.

Many of the projects described in this thesis rely on the particle-mesh (PM) simulation technique. It has
originally been introduced and applied in many different areas of physics, such as electromagnetism, hydrody-
namics, magnetohydrodynamics, plasma physics and self-gravitating systems (see e.g. the books by Hockney &
Eastwood, 1981 and Birdsall & Langdon, 1985). In a cosmological context, the reference papers include Klypin
& Shandarin (1983); Efstathiou et al. (1985).

This appendix reviews the PM technique, the cola modification, and the numerical implementation of La-
grangian perturbation theory. More details on cosmological PM codes can be found in the review by Bertschinger
(1998) or the lectures notes by Kravtsov (2002); Springel (2014); Teyssier (2014). The reader is also referred

http://www.oed.com/
https://telescoper.wordpress.com/2014/05/08/illustris-cosmology-and-simulation/
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to the cola papers, Tassev, Zaldarriaga & Eisenstein (2013); Tassev et al. (2015); and to Scoccimarro (1998,
appendix D), for the implementation of LPT.

This appendix is organized as follows. In section B.1, we write down the equations actually solved by
PM/cola codes. We describe the main PM steps and the required data structures in section B.2. Section
B.3 reviews mesh assignments and interpolation schemes; section B.4 discusses the resolution of the Poisson
equation and the computation of forces; and section B.5 examines how to update the positions and momenta of
particles. Finally, B.6 describes the generation of cosmological initial conditions using Lagrangian perturbation
theory.

B.1 Model equations
B.1.1 Model equations in the standard PM code

A PM codes solves the equation of motion for dark matter particles in comoving coordinates (see equation
(1.74); below the mass of particles m is absorbed in the definition of the momentum p):

p = a
dx
dτ , (B.1)

dp
dτ = −a∇Φ, (B.2)

coupled with the Poisson equation for the gravitational potential (equation (1.72)),

∆Φ = 4πGa2ρ̄(τ)δ = 3
2Ωm(τ)H2(τ)δ. (B.3)

It is convenient to choose the scale factor as time variable. Using ∂τ = a′ ∂a = ȧa ∂a and ρ̄(τ) = ρ(0)a−3, the
equations to solve are rewritten:

dx
da = p

a′a
= p
ȧa2 , (B.4)

dp
da = −a∇Φ

a′
= −∇Φ

ȧ
, (B.5)

∆Φ = 4πGρ(0)a−1δ = 3
2Ω(0)

m a−1δ. (B.6)

We will use the equivalent formulation
dx
da = D(a)p, (B.7)

dp
da = K (a)∇

(
∆−1δ

)
, (B.8)

where we have combined equations (B.5) and (B.6), and defined f(a) ≡ ȧ−1 = a/a′ = H−1(a); D(a) ≡ f(a)/a2

(the “drift prefactor”) and K (a) ≡ −(3/2)Ω(0)
m f(a)/a (the “kick prefactor”).

B.1.2 Model equations with COLA
If one desires to include the cola scheme (see Tassev, Zaldarriaga & Eisenstein, 2013, and section 7.3.1),

then one works in a frame comoving with the Lagrangian displacements. Recall the LPT position of a particle
is given by (see section 1.5),

xLPT(a) = q−D1(a)Ψ1 +D2(a)Ψ2. (B.9)
Noting x(a) = xLPT(a) + xMC(a) the real position of the same particle, including the mode-coupling residual
xMC(a), one has (see equation (B.9)):

dx
da = dxLPT

da + dxMC

da ; with dxLPT

da = −dD1

da Ψ1 + dD2

da Ψ2 ≡ D(a)pLPT. (B.10)

We also define pMC such that dxMC/da ≡ D(a)pMC. Then p = pLPT +pMC (see equation (B.7)). Furthermore,

dpLPT
da = d

da

(
1

D(a)
dxLPT

da

)
≡ −K (a)V [xLPT](a), (B.11)
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where the differential operator V [·](a) is defined by

V [·](a) ≡ − 1
K (a)

d
da

(
1

D(a)
d ·
da

)
. (B.12)

With these notations, equation (B.8) reads

dp
da = dpLPT

da + dpMC
da = −K (a)V [xLPT](a) + dpMC

da = K (a)∇
(
∆−1δ

)
. (B.13)

It is straightforward to check from equation (B.9) that V [xLPT](a) = −V [D1](a)Ψ1 + V [D2](a)Ψ2. Using the
differential equation verified by D1 (equation (1.96)) and the second Friedmann equation (equation (1.7)), we
get

V [D1](a) = D1(a). (B.14)

Similarly for the second-order growth factor, using equation (1.118),

V [D2](a) = D2(a)−D2
1(a). (B.15)

In the cola framework, the natural variables are therefore x and pMC, and the equations of motion to solve
(equivalents of equations (B.7) and (B.8)) are

dx
da = D(a)pMC −

dD1

da Ψ1 + dD2

da Ψ2, (B.16)

dpMC
da = K (a)

[
∇
(
∆−1δ

)
− V [D1](a)Ψ1 + V [D2](a)Ψ2

]
. (B.17)

In the initial conditions, generated with LPT (see section B.6), we have p = pLPT; therefore the mode-
coupling momentum residual in the rest frame of LPT observers, pMC, should be initialized to zero (this
corresponds to the L− operator in Tassev, Zaldarriaga & Eisenstein, 2013, appendix A). At the end, the LPT
momentum pLPT has to be added to pMC to recover the full momentum of particles, p (this corresponds to
the L+ operator in Tassev, Zaldarriaga & Eisenstein, 2013, appendix A). In the following, wherever we do not
make the explicit distinction between the standard PM and the cola approaches, we will drop the subscript
“MC” for cola momenta and simply note p; however, one should keep in mind these two transformations at
the beginning and at the end.

B.2 Steps and data structures

B.2.1 Main PM steps
Equations (B.7) and (B.8) are solved iteratively in a PM code, which consists of three main steps:

1. estimate the density field on the grid from current particle positions; solve the Poisson equation on the grid
to get the potential; take the gradient of the potential to get the accelerations on the grid; and interpolate
back to particles (see sections B.3 and B.4),

2. advance particle momenta using the new accelerations (equation (B.8); see section B.5)

3. update particle positions using their new momenta (equation (B.7); see section B.5).

In the cola scheme, steps 2 and 3 are replaced with the equivalents that come from equations (B.17) and
(B.16), respectively.

B.2.2 Definitions and data structures
Grids and box size. A PM cosmological simulation is characterized by

• the number of particles, Np (if particles start from a regular Lagrangian grid – see section B.6 –, we note
Np0, Np1, Np2 the number of particles along each direction, such that Np ≡ Np0Np1Np2);
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• the size of the periodic box along each direction, L0, L1, L2 (the total volume simulated is therefore
V ≡ L0L1L2);

• and the number of cells of the PM grid (i.e. the grid on which density and potential are defined) along
each direction, Ng0, Ng1, Ng2, with Ng ≡ Ng0Ng1Ng2.

In many cases we will assume that the box is cubic, and that the particle grid and the PM grid are isotropic:
L0 = L1 = L2 ≡ L; Np0 = Np1 = Np2; Ng0 = Ng1 = Ng2. In the following, we denote the side lengths of cells
by ∆x ≡ L0/Ng0, ∆y ≡ L1/Ng1, ∆z ≡ L2/Ng2 and their volume by Vc ≡ ∆x∆y∆z. We have V = NgVc.

Particle variables. Assuming that particles all have the same mass,1 a PM code needs a minimum of six real
numbers (float or double) for each particle: three coordinates and three momenta. If the cola modification
is included (see section 7.3.1), a minimum of nine (for LPT at order one) or twelve (for LPT at order two) real
numbers per particle is required (three additional real numbers per particle to store the LPT displacements at
each order).

We call these arrays x[mp], y[mp], z[mp] (particles’ positions); px[mp], py[mp], pz[mp] (particles’ mo-
menta); and if cola is enabled, psix_1[mp], psiy_1[mp], psiz_1[mp] (for the ZA displacements, Ψ1),
psix_2[mp], psiy_2[mp], psiz_2[mp] (for the 2LPT displacements, Ψ2). Here mp indexes a particle. It
is interesting to note that the arrays containing the Lagrangian displacements are constants, i.e. that they
are never updated within the code (their time-independence can be checked in equations (B.16) and (B.17)).
Convenient data structures are 1D arrays of size Np for particles’ variables.

Grid variables. In addition, the code needs real numbers (float or double) for the density contrast δ and
the potential Φ at each grid cell. An array of size Ng is needed to store such grid variables. This array can be
shared between density and potential: we first use it to store the density contrast δ, then replace its values with
the potential when the Poisson equation is solved.2

We call this array density_or_Phi. A convenient data structure is a 3D array, such that the grid quantity
at position (i, j, k) is density_or_Phi[i,j,k] (with 0 ≤ i < Ng0, 0 ≤ j < Ng1, 0 ≤ k < Ng2). Equivalently, we
decided to implement density_or_Phi as a 1D array of size Ng, such that the grid quantity at position (i, j, k)
is given by density_or_Phi[mc] where the current cell is indexed by mc = k +Ng2 × (j +Ng1 × i).

Accelerations. It is also convenient to have three additional arrays of size Ng to store the components of the
acceleration on the grid, and three arrays of size Np to store the components of particles’ acceleration.3 In
the following, we note these arrays gx[mc], gy[mc], gz[mc], gpx[mp], gpy[mp], gpz[mp], where 0 ≤ mc < Ng
indexes a grid cell and 0 ≤ mp < Np indexes a particle.4

B.3 Mesh assignments and interpolations
This section describes how to assign to the grid a quantity carried by particles (the “mesh assignment”

operation, from particles to the grid), and how to distribute to particles a quantity that is known on the grid
(the “interpolation” operation, from the grid to particles).

In a PM code, the first operation is used to compute the density on the grid from particle positions; and the
second operation is used to assign an acceleration to each particle from grid values. Both are used in step 1 of
the main PM steps (see section B.2.1).

1 From the definition of Ω(0)
m , it is easy to see that the mass carried by each particle is m =

3Ω(0)
m H2

0
8πG

V

Np
(this number is called

the mass resolution).
2 The quantity stored is actually the reduced gravitational potential, Φ̃ ≡ ∆−1δ, as the overall time-dependent coefficients needed

to go from Φ̃ to Φ are factored out in K (a) (see equations (B.8) and (B.17)).
3 Actually the reduced acceleration g̃ ≡ ∇

(
∆−1δ

)
instead of the physical acceleration, see footnote 2.

4 These arrays are not absolutely required. Indeed, it is possible to get rid of them and to make the code more memory-efficient,
if one performs in one step the finite difference (to go from ∆−1δ to ∇(∆−1δ)), the interpolation (from the grid quantities to
particles, see section B.3) and the kick operation (see section B.5).
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B.3.1 The mesh assignment function
The general idea to assign particles to the grid is to assume that they have a “shape” S that intersects the

grid. Let us first describe the one-dimensional case, where S(x) is the 1D particle shape. The fraction of the
particle at xp assigned to the cell at xc is the shape function averaged over this cell:

W (xp − xc) ≡
∫ xc+∆x/2

xc−∆x/2
S(x′ − xp) dx′ =

∫
Π
(
x′ − xc

∆x

)
S(x′ − xp) dx′ (B.18)

The assignment function is hence the convolution:

W (x) = Π
( x

∆x

)
∗ S(x) where Π(s) =

{
1 if |s| ≤ 1

2
0 otherwise. (B.19)

In 3D,
W (xp − xc) ≡W (xp − xc)W (yp − yc)W (zp − zc). (B.20)

For some quantity A, if Ap are the values carried by the particles at positions xp, the quantity A at position
xc on the grid is

A(xc) =
∑
{xp}

ApW (xp − xc). (B.21)

In particular, for gravitational PM codes, the quantity carried by particles is their mass m. The density on the
mesh is then a sum over the contributions of each particle as given by the assignment function,

ρ(xc) = 1
Vc

∑
{xp}

mW (xp − xc). (B.22)

The mean density is ρ̄ = mNp/V , from which we deduce the density contrast δ ≡ ρ/ρ̄− 1 on the mesh,

δ(xc) =

Ng

Np

∑
{xp}

W (xp − xc)

− 1. (B.23)

B.3.2 Low-pass filtering
The Nyquist-Shannon sampling theorem (Nyquist, 1928; Shannon, 1948, 1949) states that the information

content of a sampled signal can be correctly recovered if two conditions hold: the signal must be band-limited,
and the sampling frequency must be greater than twice the maximum frequency present in the signal. If this
is not the case, replicated spectra cannot be separated of the signal we seek to recover, a phenomenon known
as aliasing (e.g. Manolakis, Ingle & Kogon, 2000). Natural signals, however, are generally not band-limited,
so must be low-pass filtered before they are sampled. Equivalently, the sampling operation must include some
form of local averaging, reflecting the finite spatial resolution.

The Fourier representation5 of the ideal low-pass filter that one should use as assignment function is given
as

W (k) = 1√
2π

Π
(

k

kNyq,x

)
= 1√

2π
×
{

1 if |k| < kmax
0 if |k| ≥ kmax,

(B.24)

where kmax ≡ kNyq,x/2, and kNyq,x ≡ 2π/∆x is the Nyquist wavenumber. This filter is ideal in the sense that it
has unity gain in the pass-band region and it perfectly suppresses all the power in the stop-band regions. The
configuration space representation is

W (x) = 1
∆x sinc

( x

∆x

)
, (B.25)

where s 7→ sinc(s) ≡ sin(πs)
πs is the cardinal sine function (using the signal processing convention). It is interesting

to note that W (x) is not always positive. Therefore, the physical property of a continuous density field to be
positive will not be reflected in its discretized representation, using ideal low-pass filtering. The loss of physicality
is an expression of a fundamental problem of any data processing procedure: the loss of information due to
discretizing the continuous signal.

5 Here, we use the conventions for forward and inverse Fourier transforms as introduced in section 1.2.4.1.
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Furthermore, due to the infinite support of the cardinal sine function in configuration space, the ideal
sampling method is generally not tractable, because computationally too expensive. For this reason, practical
approaches often rely on approximating the ideal cardinal sine operator by less accurate, but faster calculable
functions (often with compact support in configuration space). In Fourier space, this will generally introduce
artificial attenuation of the pass-band modes and leakage of stop-band modes into the signal (i.e. incomplete
suppression of the aliasing power). The optimal choice of a low-pass filter approximation is therefore always
a choice between accuracy and computational speed (see e.g. Manolakis, Ingle & Kogon, 2000, for detailed
studies). In the following section we discuss common approaches used in particle simulations.

B.3.3 Common mesh assignment schemes
Commonly used particle shape functions and assignment schemes are often presented as a hierarchy (Hockney

& Eastwood, 1981). The simplest scheme is to consider that particles are punctual and to assign each of them
to the nearest grid point: W (xp − xc) = 1 if xc − ∆x

2 ≤ xp ≤ xc + ∆x
2 , 0 otherwise. The shape function is

therefore
SNGP(x) ≡ δD(x) and SNGP(x) ≡ δD(x)δD(y)δD(z). (B.26)

This is the Nearest Grid Point (NGP) assignment scheme.
The second particle shape function in the hierarchy is a rectangular parallelepiped (a “cloud”) of side length

∆x, ∆y, ∆z. This scheme involves the 8 nearest cells for each particle and is called the Cloud-in-Cell (CiC)
scheme. The shape function is

SCiC(x) ≡ 1
∆xΠ

( x

∆x

)
and SCiC(x) ≡ 1

∆x∆y∆zΠ
( x

∆x

)
Π
(
y

∆y

)
Π
( z

∆z

)
. (B.27)

This shape function can be seen as the convolution 1
∆xΠ

(
x

∆x
)
∗ δD(x). Higher-order assignment schemes

are obtained by successively convolving with 1
∆xΠ

(
x

∆x
)
along each direction. For example, the third-order

scheme is called the Triangular Shaped Cloud (TSC) and involves the 27 neighboring cells for each particle. In
one-dimension, the shape function is

STSC(x) ≡ 1
∆xΠ

( x

∆x

)
∗ 1

∆xΠ
( x

∆x

)
. (B.28)

The Fourier transform of x 7→ 1
∆xΠ

( x

∆x

)
is k 7→ 1√

2π
sinc

(
k

kNyq,x

)
. Therefore, in Fourier space, building

the hierarchy is taking successive powers of 1√
2π

sinc
(

k

kNyq,x

)
. The assignment function W is found by an

additional convolution of S with x 7→ Π
( x

∆x

)
, which means, in Fourier space, an additional multiplication by

∆x√
2π
× sinc

(
k

kNyq,x

)
. In figure B.1, we show the shape functions S for the NGP, CiC and TSC schemes (first

row), the corresponding assignment functions W (second row) and their normalized Fourier transforms, Ŵ/∆x
(rescaled such that Ŵ (k = 0)/∆x = 1; third row).

High order schemes are obviously more expensive numerically, but they also give more precise results: from
equation (B.21) and the shape functions, we see that resulting quantities on the grid (density, forces) are
piecewise constant in cells (NGP); C0 and piecewise linear (CiC); C1 with piecewise linear first derivative
(TSC), etc. (see figure B.1). The choice is a tradeoff between accuracy and computational expense.

We summarize the results of this section in table B.1. In the following, we further comment on the well-
known CiC scheme, which is the prescription used to assign particles to the grid throughout this thesis, including
in PM and cola implementations.

Let us consider the CiC density assignment for a particle with coordinates (xp, yp, zp). The cell containing
the particle has indexes given by

i =
⌊ xp

∆x

⌋
; j =

⌊
yp

∆y

⌋
; k =

⌊ zp

∆z

⌋
, (B.29)

where b·c is the integer floor function. We consider that the cell center is at (xc, yc, zc) = (i×∆x, j×∆y, k×∆z).6

6 The other common convention is to displace the cell center by half a voxel with respect to (i × ∆x, j × ∆y, k × ∆z), i.e.
(xc, yc, zc) = (i×∆x+ ∆x

2 , j ×∆y + ∆y
2 , k ×∆z + ∆z

2 ).
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Figure B.1: Shape functions in configuration space for the first three schemes of the natural hierarchy of mesh assignments
(S, first row); the corresponding assignment functions (W , second row) and their normalized Fourier transform (Ŵ , third
row). From left to right, the schemes are: Nearest Grid Point (NGP), Cloud-in-Cell (CiC), Triangular Shaped Cloud
(TSC). The Nyquist wavenumber is defined by kNyq,x ≡ 2π/∆x. For comparison, the dashed black lines show the
configuration and Fourier space representations of the ideal low-pass filter kernel.

Name Shape function
S(x)

Number of
cells involved

Properties of
grid-wise quantities

NGP δ(x) 13 = 1 Piecewise constant in cells

CiC 1
∆xΠ

( x

∆x

)
23 = 8 C0, piecewise linear

TSC 1
∆xΠ

( x

∆x

)
∗ 1

∆xΠ
( x

∆x

)
33 = 27 C1, differentiable with

piecewise linear derivative

Table B.1: Summary of the properties of commonly used particle shape functions.
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(i,j,k) (ii,j,k) 

(ii,jj,k) (i,jj,k) 

dx tx 

dy 

ty 

Figure B.2: Two-dimensional illustration of the Cloud-in-Cell assignment scheme. Evertyhing is expressed in units of
the cell size, ∆x along the x direction and ∆y along the y direction. In three dimensions, the particle is assigned to the
eight neighboring cells with different weights given by equations (B.33)–(B.40).

As noted before the particle may contribute to densities in the parent cell (xc, yc, zc) and the seven neigh-
boring cells. Let us define

ii = mod(i+ 1, Ng0); jj = mod(j + 1, Ng1); kk = mod(k + 1, Ng2). (B.30)

The modulo function enforces periodic boundary conditions. The particle contributes to the eight cells indexed
by (i, j, k), (ii, j, k), (i, jj, k), (i, j, kk), (ii, jj, k), (ii, j, kk), (i, jj, kk) and (ii, jj, kk). Let us define

dx = xp − xc

∆x = xp

∆x − i; dy = yp − yc

∆y = yp

∆y − j; dz = zp − zc

∆z = zp

∆z − k; (B.31)

tx = 1− dx; ty = 1− dy; tz = 1− dz. (B.32)

Contributions to the eight cells are given by the formulae below, which also correspond to linear interpolations
in 3D:

W
(
xp − x(i,j,k)

)
= txtytz, (B.33)

W
(
xp − x(ii,j,k)

)
= dxtytz, (B.34)

W
(
xp − x(i,jj,k)

)
= txdytz, (B.35)

W
(
xp − x(i,j,kk)

)
= txtydz, (B.36)

W
(
xp − x(ii,jj,k)

)
= dxdytz, (B.37)

W
(
xp − x(ii,j,kk)

)
= dxtydz, (B.38)

W
(
xp − x(i,jj,kk)

)
= txdydz, (B.39)

W
(
xp − x(ii,jj,kk)

)
= dxdydz. (B.40)

Summing over all particles will result in the calculation of any quantity A on the grid (equation (B.21)), in
particular the density contrast (equation (B.23)).

In figure B.2, we illustrate the CiC scheme in two dimensions. The first step is to identify the cell indexes
i, ii, j, jj, k, kk. Then, one computes the weight coefficients dx, tx, dy, ty, dz, tz as shown on the figure, and assigns
the particle to the neighboring cells using the formulae above.
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B.3.4 Interpolation
Interpolation is used to distribute a grid-wise quantity to particles. For example, for PM codes, accelerations

are computed on the grid (see section B.4), then interpolated back to each particle’s position.
Using the same notations as before, for some quantity A, the problem is to compute Ap given the values of

A(xc) in all the cells. This can be written in a similar fashion as equation (B.21), but summing on grid cells
instead of particles:

Ap = A(xp) =
∑
{xc}

A(xc)W (xp − xc). (B.41)

W is the assignment function defined in section B.3.1, which involves a shape function S as previously (NGP,
CiC, TSC, etc.). It is generally important to be consistent between the mesh assignment scheme and the
interpolation scheme. In particular, for PM codes, the same prescription should be used for density assignment
and for interpolating accelerations at particles’ positions. This ensures the absence of artificial self-forces (forces
exerted by a particle on itself) and momentum conservation (Hockney & Eastwood, 1981).

For the NGP scheme, the value of Ap for a particle is just the value of A(xc) in its parent cell (i, j, k). For
the CiC scheme, using equations (B.41) and (B.33)–(B.40), we find:

Ap = A(i,j,k)txtytz +A(ii,j,k)dxtytz +A(i,jj,k)txdytz +A(i,j,kk)txtydz

+A(ii,jj,k)dxdytz +A(ii,j,kk)dxtydz +A(i,jj,kk)txdydz +A(ii,jj,kk)dxdydz. (B.42)

This is identical to trilinear interpolation.

B.4 Poisson equation and accelerations
After density assignment, several steps are done on the mesh in PM codes: solving the Poisson equation to

get the reduced gravitational potential Φ̃ ≡ ∆−1δ (section B.4.1), and then differentiating to get the reduced
accelerations g̃ ≡ ∇

(
∆−1δ

)
(section B.4.2).

B.4.1 Solving the Poisson equation
It is customary to solve the Poisson equation in Fourier space:

1. the configuration-space density contrast δ(x) is Fourier-transformed to get δ(k);

2. the reduced gravitational potential is estimated by solving the Poisson equation in Fourier space,
Φ̃(k) = G(k)δ(k), where G(k) is a Green’s function for the Laplacian, discussed below;

3. the reduced gravitational potential Φ̃(k) is transformed back to real space to get Φ̃(x).

As noted in section B.2.2, the same array can be used to store δ and Φ̃, by doing in-place Fourier transforms.

Fourier transforms. Steps 1 and 3 involve forward and backward discrete Fourier transforms. In the codes im-
plemented for this thesis, we use the Fast Fourier Transform approach for discrete data, provided by the FFTW
software library,7 defined and normalized as follows, for the forward and backward operations respectively:

f̂`,m,n = ∆x∆y∆z
Ng0−1∑
i=0

Ng1−1∑
j=0

Ng2−1∑
k=0

fi,j,k e−2iπ(i`+jm+kn)/Ng ,

fi,j,k = 1
L0L1L2

Ng0−1∑
i=0

Ng1−1∑
j=0

Ng2−1∑
k=0

f̂`,m,n e2iπ(i`+jm+kn)/Ng .

In the following, we note the components of a Fourier mode k as kx = 2π
L0
`, ky = 2π

L1
m, kz = 2π

L2
n.

7 http://www.fftw.org/

http://www.fftw.org/
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Green’s function. The choice for the Green’s functionG(k) depends on how one wants to represent to Laplacian
in configuration space. In Fourier space, the reduced potential obeys −k2Φ̃(k) ≡ δ(k) where k2 ≡ |k|2 =
k2
x + k2

y + k2
z . It is therefore natural to simply use as Green’s function for the Laplacian G(k) = −1/k2. This is

the choice adopted in Gadget-2 (Springel, Yoshida & White, 2001; Springel, 2005) and in the codes used in this
thesis. Care should be taken however, as this choice corresponds to a highly non-local function in configuration
space (see e.g. the discussion in Birdsall & Langdon, 1985, appendix E). Alternatively, we can discretize the
Laplacian operator using the so-called 7-point template,

(∆Φ)i,j,k = Φi−1,j,k + Φi+1,j,k + Φi,j−1,k + Φi,j+1,k + Φi,j,k−1 + Φi,j,k+1 − 6Φi,j,k, (B.43)

for which the Green’s function is given by

G(k) = −1
4

[
sin2

(
kx∆x

2

)
+ sin2

(
ky∆y

2

)
+ sin2

(
kz∆z

2

)]−1
. (B.44)

Force smoothing. Due to the finite resolution of the PM grid, short-range forces cannot be accurately resolved,
which can cause spurious effects in simulations (Hockney & Eastwood, 1981). For this reason, we smooth the
short-range forces by multiplying by a Gaussian kernel in Fourier space,

Kks(k) = exp
(
−1

2
k2

k2
s

)
, where ks ≡

2π
L
As. (B.45)

As is a free parameter that defines the split between long-range and short-range forces, in units of mesh cells.
In our codes, we adopted As = 1.25, the default value used in Gadget-2.

Deconvolution of the CiC kernel. We also correct for the convolution with the CiC kernel, by dividing twice
by (see section B.3.3)

KCiC(k) = sinc2
(

kx
kNyq,x

)
sinc2

(
ky

kNyq,y

)
sinc2

(
kz

kNyq,z

)
. (B.46)

One deconvolution corrects for the smoothing effect of the CiC in the density assignment, the other for the force
interpolation (Springel, 2005).

Overall factor in Fourier space. Summing up our discussions in this section, the overall factor that we apply
to δ in Fourier space (that we still note G(k) for convenience) is

G(k) = − 1
k2 ×

Kks(k)
KCiC(k)2 . (B.47)

After performing an inverse Fourier transform, we obtain the reduced gravitational potential on the mesh.

B.4.2 Computation of the accelerations
We get the reduced accelerations on the mesh by finite differencing the reduced potential. It would also

be possible to take the gradient in Fourier space, by multiplying the potential by a factor −ik and obtaining
directly the accelerations. However, this would require an inverse Fourier transform for each coordinate (i.e.
three instead of one), with little gain in accuracy compared to finite differences (Springel, 2005).

We adopt central finite differences. Several schemes are possible depending on the desired accuracy. The
two-point finite difference approximation (FDA2) is

g̃x(i,j,k) ≡
∂Φ̃
∂x

∣∣∣∣∣
(i,j,k)

≈ 1
∆x

[
1
2Φ̃(i+1,j,k) −

1
2Φ̃(i−1,j,k)

]
(B.48)

and similar formulae for the other coordinates g̃y and g̃z. The accuracy is of order O(∆x2).
In the codes implemented for this thesis, we adopted the four-point finite difference approximation (FDA4),

as in Gadget-2,

g̃x(i,j,k) ≡
∂Φ̃
∂x

∣∣∣∣∣
(i,j,k)

≈ 1
∆x

[
2
3

(
Φ̃(i+1,j,k) − Φ̃(i−1,j,k)

)
− 1

12

(
Φ̃(i+2,j,k) − Φ̃(i−2,j,k)

)]
(B.49)
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which offers order O(∆x4) accuracy. In the two equations above, periodic boundary conditions should always
be enforced: i+ 1 is actually mod(i+ 1, Ng0), etc.

After having computed the three components of the accelerations on the grid, g̃x(xc), g̃y(xc), g̃z(xc), we
interpolate with the CiC scheme (see section B.3.4) to get the accelerations at particles’ positions, g̃x(xp),
g̃y(xp), g̃z(xp).

B.5 Update of positions and momenta
Now that we have the accelerations for each particle from the grid-based Poisson solver (step 1 in section

B.2.1), we are able to update their momenta (“kick”) and their positions (“drift”). This corresponds to steps
2 and 3 in section B.2.1. At this point, we have to adopt a time integration scheme to update positions and
momenta from ai to af , and to define Kick and Drift operators. This is the object of sections B.5.1 and B.5.2,
respectively.

B.5.1 Time integrators
Let us consider a Hamiltonian system, described in phase space by the canonical coordinates z = (q, p) and

the Hamiltonian H(p, q) ≡ p2/2 + Φ(q). If we call f(z) = (p,−∂Φ/∂q), then Hamilton’s equations simply read
ż = f(z). Hamilton’s equations are a symplectic map, which means that the energy and the volume in phase
space are time-invariants:

dH
dt = 0 and ∇ · f = 0. (B.50)

It is generally important to adopt a numerical integrator that respects these two conditions, at least ap-
proximately (see also the discussion in section 3.4.3). For a map z(t) = F(z0), the volume in phase space is
conserved if det ∂F

∂z = 1. Classical first order time integrators use Euler’s method. In particular, the explicit
Euler method,

zn+1 = zn + f(zn)∆t; for which det ∂F
∂z = 1 + ∆t2 ∂

2Φ
∂q2 , (B.51)

and the implicit Euler method,

zn+1 = zn + f(zn+1)∆t; for which det ∂F
∂z = 1

1 + ∆t2 ∂
2Φ
∂q2

, (B.52)

are only approximately symplectic. Using the particles’ positions at time tn and momenta at time tn+1 makes
the Euler integrator symplectic:

zn+1 = zn + f(qn, pn+1)∆t; det ∂F
∂z = 1. (B.53)

For this thesis, we adopted the second-order symplectic “kick-drift-kick” algorithm, also known as the
leapfrog scheme (e.g. Birdsall & Langdon, 1985, see also section 4.3.4):

pn+1/2 = pn −
∂Φ
∂q

∣∣∣∣
n

∆t
2 , (B.54)

qn+1 = qn + pn+1/2 ∆t, (B.55)

pn+1 = pn+1/2 −
∂Φ
∂q

∣∣∣∣
n+1

∆t
2 . (B.56)

It is a straightforward exercise to check that this scheme exactly preserves volume in phase space.
For PM and cola codes, we assume a constant integration step ∆a ≡ af−ai

n , in such a way that the initial
scale factor is ai = a0 and the final scale factor is af = an+1 = ai + n∆a. A schematic view of the leapfrog
integration scheme is show in figure B.3. Note that during the evolution, positions and momenta are not
synchronized but displaced by half a timestep. For this reason during the first timestep, we give the particles
only “half a kick” using the accelerations computed at ai; and during the last timestep, we give the particles an
additional “half a kick”, to synchronize momenta with positions at af .
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x 

Figure B.3: Schematic illustration of the leapfrog integrator. Particles’ momenta and positions are updated in turn,
given the value of the other variable within the time interval.

B.5.2 Kick and Drift operators
In equations (B.7) and (B.8), all the explicit dependence on the scale factor is in the prefactors D(a) and

K (a). The leapfrog scheme algorithm relies on integrating the equations on a small timestep and approximating
the momenta or accelerations in the integrands by their value at some time within the interval. More precisely,
for the “drift equation”:

x
(
aD
f

)
− x

(
aD
i

)
=
∫ aD

f

aD
i

D(ã)p(ã) dã ≈
(∫ aD

f

aD
i

D(ã) dã
)
p
(
aK) (B.57)

and similarly for the “kick equation”:

p
(
aK
f

)
− p

(
aK
i

)
=
∫ aK

f

aK
i

K (ã)
[
∇
(
∆−1δ

)]
(ã) dã ≈

(∫ aK
f

aK
i

K (ã) dã
)[
∇
(
∆−1δ

)]
(aD) (B.58)

This defines the Drift (D) and Kick (K) operators:

D(aD
i , a

D
f , a

K) : x(aD
i ) 7→ x(aD

f ) = x(aD
i ) +

(∫ aD
f

aD
i

D(ã) dã
)
p
(
aK) (B.59)

K(aK
i , a

K
f , a

D) : p(aD
i ) 7→ p(aD

f ) = p(aD
i ) +

(∫ aK
f

aK
i

K (ã) dã
)[
∇
(
∆−1δ

)]
(aD) (B.60)

Consistently with the scheme described in section B.5.1, the time evolution between a0 and an+1 is then achieved
by applying the following operator, E(an+1, a0), to the initial state (x(a0),p(a0)):

K(an+1/2, an+1, an+1)D(an, an+1, an+1/2)
[
n∏
i=0

K(ai+1/2, ai+3/2, ai+1)D(ai, ai+1, ai+1/2)
]

K(a0, a1/2, a0).

(B.61)
If the cola scheme is adopted, we obtain in a similar manner, from equations (B.16) and (B.17):

x
(
aD
f

)
− x

(
aD
i

)
≈

(∫ aD
f

aD
i

D(ã) dã
)
pMC

(
aK)−(∫ aD

f

aD
i

dD1(ã)
dã dã

)
Ψ1 +

(∫ aD
f

aD
i

dD2(ã)
dã dã

)
Ψ2,

=
(∫ aD

f

aD
i

D(ã) dã
)
pMC

(
aK)− [D1]a

D
f

aD
i

Ψ1 + [D2]a
D
f

aD
i

Ψ2, (B.62)

pMC
(
aK
f

)
− pMC

(
aK
i

)
≈

(∫ aK
f

aK
i

K (ã) dã
)([
∇
(
∆−1δ

)]
(aD)− V [D1](aD)Ψ1 − V [D2](aD)Ψ2

)
=
(∫ aK

f

aK
i

K (ã) dã
)([
∇
(
∆−1δ

)]
(aD)−D1(aD)Ψ1 +

(
D2(aD)−D2

1(aD)
)
Ψ2
)
.(B.63)
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In the last line we used equations (B.14) and (B.15). This defines new Drift (D̃) and Kick (K̃) operators:

D̃(aD
i , a

D
f , a

K) : x(aD
i ) 7→ x(aD

f ) = x(aD
i ) +

(∫ aD
f

aD
i

D(ã) dã
)
pMC

(
aK)− [D1]a

D
f

aD
i

Ψ1 + [D2]a
D
f

aD
i

Ψ2 (B.64)

K̃(aK
i , a

K
f , a

D) : pMC(aD
i ) 7→ pMC(aD

f ) = pMC(aD
i ) +

(∫ aK
f

aK
i

K (ã) dã
)
×([

∇
(
∆−1δ

)]
(aD)−D1(aD)Ψ1 +

(
D2(aD)−D2

1(aD)
)
Ψ2
)
. (B.65)

With cola, the time evolution between a0 and an+1 is achieved by applying the following operator to the initial
state (x(a0),p(a0)):

L+(an+1)Ẽ(an+1, a0)L−(a0), (B.66)

where Ẽ(an+1, a0) is the operator given by equation (B.61), replacing D by D̃ and K by K̃, and we where we
use (see Tassev, Zaldarriaga & Eisenstein, 2013, appendix A):

L±(a) : p(a) 7→ p(a)± pLPT(a) = p(a)± 1
D(a)

(
−dD1

da Ψ1 + dD2

da Ψ2

)
. (B.67)

L− transforms the initial conditions to the rest frame of LPT observers (this is the same as initializing pMC to
zero), and L+ adds back the LPT momenta to pMC at the end.

In the codes implemented for this thesis, the integrals appearing in the Kick and Drift operators (equations
(B.59), (B.60), (B.64), (B.65)) are explicitly computed numerically. Another approach for the discretization of
time operators is proposed by Tassev, Zaldarriaga & Eisenstein (2013, section A.3.2.). When needed, the first
order growth factor D1 and its logarithmic derivative f1 are also computed numerically by explicit integration.
For the second-order growth factor and its logarithmic derivative, we use the fitting functions given by equations
(1.119) and (1.138) (Bouchet et al., 1995),

D2(τ) ≈ −3
7D1(τ)Ω−1/143

m and f2(τ) ≈ 2f1(τ)54/55. (B.68)

B.6 Setting up initial conditions
The last missing part for a full cosmological pipeline including the PM/cola codes described in previous

sections is a way to set up initial conditions at a = ai. The first step (section B.6.1) is to generate a realization
of the random density field describing the early Universe. As argued in chapter 1, it is physically relevant to
describe this field as a Gaussian random field.

The second step (section B.6.2) is to produce a high-redshift particle realization from this initial density
field, to be given to the PM code. The common approach is to use Lagrangian perturbation theory (the ZA
or 2LPT). Several existing codes perform this task: among others, Grafic (Bertschinger, 2001), N-GenIC
(Springel, Yoshida & White, 2001; Springel, 2005, using the ZA) and its 2LPT extension, 2LPTic (Crocce,
Pueblas & Scoccimarro, 2006b; Pueblas & Scoccimarro, 2009), MPGrafic (Prunet et al., 2008), music (Hahn
& Abel, 2011). However, for the purpose of this thesis, we implemented an independent ZA/2LPT initial
conditions generator. It is especially designed for full consistency with the borg algorithm (see chapter 4); in
particular, it uses the same routine as borg for the generation of LPT displacement fields.

B.6.1 The initial Gaussian random field
There exists many software packages that allow generating normal random variates (i.e. single Gaussian

random variates with mean 0 and variance 1), for example using the well-known Box-Müller method. We choose
the routines provided by the GNU scientific library (Galassi et al., 2003). We generate one such normal random
variate in each cell of the initial grid, and call the resulting vector the “initial white noise field” ξ. It is a random
signal with constant power spectrum (〈ξξᵀ = 1〉). Alternatively, we can choose to import “constrained white
noise” that comes, for example, of large-scale structure inferences performed with borg.

Generally, using a vector of normal variates ξ, one can generate a realization of a grf with mean µ and
covariance matrix C by simply taking any matrix

√
C that satisfies

√
C
√
C

ᵀ = C and computing x =
√
Cξ+µ.
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One general way to generate
√
C under the condition that C has only positive definite eigenvalues is to use the

so-called Cholesky decomposition, implemented in many numerical packages.
For cosmological initial conditions, however, the problem is generally much simpler. As we are generating a

random realization of the density contrast δ, the mean is µ = 0 and, from statistical homogeneity and isotropy,
the covariance matrix C should be diagonal in Fourier space and contain the power spectrum coefficients
P (k)/(2π)3/2 (see section 1.2.4.1). Hence, an obvious choice for the matrix

√
C is the diagonal matrix containing

the coefficients
√
P (k)/(2π)3/2. Therefore, the procedure is to Fourier-transform ξ, to multiply each of its

Fourier modes of norm k by
√
P (k)/(2π)3/2, and to perform an inverse Fourier transform to get δ in configuration

space.
Physical assumptions are needed for the power spectrum coefficients P (k). One possible approach is to use

the outputs of Boltzmann codes that describe the early Universe (e.g. cmbfast – Seljak & Zaldarriaga, 1996,
camb – Lewis & Challinor, 2002, or class – Lesgourgues, 2011; Blas, Lesgourgues & Tram, 2011). However,
in our implementation, we choose (as in borg) to use the analytical power spectrum from Eisenstein & Hu
(1998, 1999) for the baryon-CDM fluid (including baryonic wiggles). It depends on the following cosmological
parameters, which have to be specified: ΩΛ, Ωm, Ωb, ns and σ8.

When performing constrained simulations (see section 7.1.3), all the steps described in this section are
bypassed, and we directly make use of the initial density contrast field inferred with borg.

B.6.2 The high-redshift particle realization
We start from “grid-like” initial conditions, i.e. a realization of Np dark matter particles, placed on a regular

lattice. More precisely, for 0 ≤ i < Np0, 0 ≤ j < Np1, 0 ≤ k < Np2, we place a particle at Lagrangian
coordinates q = (iL0/Np0, jL1/Np1, k L2/Np2). All the masses are set to the constant value given in footnote
1, and at this point all the velocities are zero. Finally, each particle’s id is set to mp = k +Np2 ×

(
j +Np1 × i

)
.

This allows to keep a memory of the initial position of particles at any later time, even in the PM code.
The following step is to compute the ZA and 2LPT displacements for each particle, given the initial density

contrast field δ(q) generated in section B.6.1. We proceed as follows. The first-order potential field, φ(1)(q), is
evaluated on the Lagrangian grid by solving equation (1.134) in Fourier space,8

φ(1)(κ) = −δ(κ)/κ2. (B.69)

Each of its second order derivatives are also evaluated in Fourier space, using

φ
(1)
,ab(κ) = −φ(1)(κ)κa · κb. (B.70)

and inverse Fourier-transformed. From the configuration-space quantity

φ(q) ≡ φ(1)
,xx(q)φ(1)

,yy(q) + φ(1)
,xx(q)φ(1)

,zz(q) + φ(1)
,yy(q)φ(1)

,zz(q)− φ(1)
,xy(q)2 − φ(1)

,xz(q)2 − φ(1)
,yz(q)2, (B.71)

we compute the second-order potential field, φ(2)(q), again in Fourier space, using (see equation (1.135))

φ(2)(κ) = −φ(κ)/κ2. (B.72)

Once φ(1)(q) and φ(2)(q) are known, we evaluate the first and second order displacements Ψ(1)(q) ≡
∇qφ

(1)(q) and Ψ(2)(q) ≡ ∇qφ
(2)(q) on the initial grid in configuration space, by using a finite difference ap-

proximation scheme at order 2 (see section B.4.2). Then, we interpolate from the grid to particles’ Lagrangian
positions using a CiC scheme (see section B.3.4).

Finally, particles are displaced from their Lagrangian positions and their velocities are modified as prescribed
by LPT (equations (1.136) and (1.137)). More precisely, particles are given a zeroth “kick”,

K0(ai) : u = 0 7→ u(ai) = −f1(ai)D1(ai)H(ai)Ψ1(q) + f2(ai)D2(ai)H(ai)Ψ2(q), (B.73)

where u ≡ dx/dτ = aHdx/da. From this we deduce the initial momenta in code units,

p(ai) = 1
aiH(ai)D(ai)

u(ai). (B.74)

They also follow a zeroth “drift”:

D0(ai) : q 7→ x(ai) = q−D1(ai)Ψ1(q) +D2(ai)Ψ2(q). (B.75)

The required numerical prefactors are computed as described at the end of section B.5.2.
8 We denote by κ a Fourier mode on the Lagrangian grid, κ its norm.


